Identification of the distribution of human endogenous retroviruses K (HML-2) by PCR-based target enrichment sequencing

Author:

Xue Bei,Zeng Tiansheng,Jia LishaORCID,Yang Dongsheng,Lin Stanley L.,Sechi Leonardo A.,Kelvin David J.

Abstract

Abstract Background Human endogenous retroviruses (HERVs), suspected to be transposition-defective, may reshape the transcriptional network of the human genome by regulatory elements distributed in their long terminal repeats (LTRs). HERV-K (HML-2), the most preserved group with the least number of accumulated of mutations, has been associated with aberrant gene expression in tumorigenesis and autoimmune diseases. Because of the high sequence similarity between different HERV-Ks, current methods have limitations in providing genome-wide mapping specific for individual HERV-K (HML-2) members, a major barrier in delineating HERV-K (HML-2) function. Results In an attempt to obtain detailed distribution information of HERV-K (HML-2), we utilized a PCR-based target enrichment sequencing protocol for HERV-K (HML-2) (PTESHK) loci, which not only maps the presence of reference loci, but also identifies non-reference loci, enabling determination of the genome-wide distribution of HERV-K (HML-2) loci. Here we report on the genomic data obtained from three individuals. We identified a total of 978 loci using this method, including 30 new reference loci and 5 non-reference loci. Among the 3 individuals in our study, 14 polymorphic HERV-K (HML-2) loci were identified, and solo-LTR330 and N6p21.32 were identified as polymorphic for the first time. Conclusions Interestingly, PTESHK provides an approach for the identification of the genome-wide distribution of HERV-K (HML-2) and can be used for the identification of polymorphic loci. Since polymorphic HERV-K (HML-2) integrations are suspected to be related to various diseases, PTESHK can supplement other emerging techniques in accessing polymorphic HERV-K (HML-2) elements in cancer and autoimmune diseases.

Funder

Li Ka Shing Foundation

Shantou University Medical College

Dalhousie Medical Research Foundation

John Evens Leadership Fund

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3