The impact of neutrophil extracellular trap from patients with systemic lupus erythematosus on the viability, CD11b expression and oxidative burst of healthy neutrophils

Author:

Fatemi Alimohammad,Alipour Razieh,Khanahmad Hossein,Alsahebfosul Fereshteh,Andalib Alireza,Pourazar Abbasali

Abstract

Abstract Background NET (neutrophil extracellular trap) has been shown to directly influence inflammation; in SLE (systemic lupus erythematosus), it is reportedly a plausible cause for the broken self-tolerance that contributes to this pathology. Meanwhile, the role of NET is not easily explicable, and there is a serious discrepancy in the role of NET in SLE pathology and generally inflammation; in particular, the interactions of neutrophils with NET have been rarely inspected. This study evaluates the effect of NET on neutrophils in the context of SLE. The neutrophils were incubated by the collected NET (from SLE patients and healthy controls) and their expression of an activation marker, viability and oxidative burst ability were measured. Results The level of cell mortality, CD11b expression and the oxidative burst capacity were elevated in NET-treated neutrophils. Also, the elevation caused by the SLE NET was higher than that produced by the healthy NET. Conclusion The decreased neutrophil viability was not due to the increase in apoptosis; rather, it was because of the augmentation of other inflammatory cell-death modes. The upregulation of CD11b implies that NET causes neutrophils to more actively contribute to inflammation. The increased oxidative burst capacity of neutrophils can play a double role in inflammation. Overall, the effects induced by NET on neutrophils help prolong inflammation; accordingly, the NET collected from SLE patients is stronger than the NET from healthy individuals.

Publisher

Springer Science and Business Media LLC

Subject

Immunology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3