Upregulated miR-146b-3p predicted rheumatoid arthritis development and regulated TNF-α-induced excessive proliferation, motility, and inflammation in MH7A cells

Author:

Ma Linxiao,Liu Huijie,Shao Ping,Lv Qian

Abstract

Abstract Background Rheumatoid arthritis (RA) is a chronic immune system disease with a high disability rate threatening the living quality of patients. Identifying potential biomarkers for RA is of necessity to improve the prevention and management of RA. Objectives This study focused on miR-146b-3p evaluating its clinical significance and revealing the underlying regulatory mechanisms. Materials and methods A total of 107 RA patients were enrolled, and both serum and synovial tissues were collected. Another 78 osteoarthritis patients (OA, providing synovial tissues), and 72 healthy individuals (providing serum samples) were enrolled as the control group. The expression of miR-146b-3p was analyzed by PCR and analyzed with ROC and Pearson correlation analyses evaluating its significance in diagnosis and development prediction of RA patients. In vitro, MH7A cells were treated with TNF-α. The regulation of cell proliferation, motility, and inflammation by miR-146b-3p was assessed by CCK8, Transwell, and ELISA assays. Results Significant upregulation of miR-146b-3p was observed in serum and synovial tissues of RA patients, which distinguished RA patients and were positively correlated with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), anti-cyclic citrullinated peptide antibodies (anti-CCP), and rheumatoid factor (RF) of RA patients. TNF-α promoted the proliferation and motility of MH7A cells and induced significant inflammation in cells. Silencing miR-146b-3p alleviated the effect of TNF-α and negatively regulated the expression of HMGCR. The knockdown of HMGCR reversed the protective effect of miR-146b-3p silencing on TNF-α-stimulated MH7A cells. Conclusions Increased miR-146b-3p served as a biomarker for the diagnosis and severity of RA. Silencing miR-146b-3p could suppress TNF-α-induced excessive proliferation, motility, and inflammation via regulating HMGCR in MH7A cells.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3