Single nuclear RNA sequencing of terminal ileum in patients with cirrhosis demonstrates multi-faceted alterations in the intestinal barrier

Author:

Jiang Xixian,Xu Ying,Fagan Andrew,Patel Bhaumik,Zhou Huiping,Bajaj Jasmohan S.ORCID

Abstract

AbstractPatients with cirrhosis have intestinal barrier dysfunction but the role of the individual cell types in human small intestine is unclear. We performed single-nuclear RNA sequencing (snRNAseq) in the pinch biopsies of terminal ileum of four age-matched men [56 years, healthy control, compensated, early (ascites and lactulose use) and advanced decompensated cirrhosis (ascites and rifaximin use)]. Cell type proportions, differential gene expressions, cell-type specific pathway analysis using IPA, and cellular crosstalk dynamics were compared. Stem cells, enterocytes and Paneth cells were lowest in advanced decompensation. Immune cells like naive CD4 + T cells were lowest while ITGAE + cells were highest in advanced decompensation patients. MECOM had lowest expression in stem cells in advanced decompensation. Defensin and mucin sulfation gene (PAPSS2) which can stabilize the mucus barrier expression were lowest while IL1, IL6 and TNF-related genes were significantly upregulated in the enterocytes, goblet, and Paneth cells in decompensated subjects. IPA analysis showed higher inflammatory pathways in enterocytes, stem, goblet, and Paneth cells in decompensated patients. Cellular crosstalk analysis showed that desmosome, protease-activated receptors, and cadherin-catenin complex interactions were most perturbed in decompensated patients. In summary, the snRNAseq of the human terminal ileum in 4 subjects (1 control and three cirrhosis) identified multidimensional alteration in the intestinal barrier with lower stem cells and altered gene expression focused on inflammation, mucin sulfation and cell–cell interactions with cirrhosis decompensation.

Funder

U.S. Department of Veterans Affairs

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3