Author:
Ostolaza Aiora,Blanco-Luquin Idoia,Urdánoz-Casado Amaya,Rubio Idoya,Labarga Alberto,Zandio Beatriz,Roldán Miren,Martínez-Cascales Judith,Mayor Sergio,Herrera María,Aymerich Nuria,Gallego Jaime,Muñoz Roberto,Mendioroz Maite
Abstract
Abstract
Background
The discovery of novel biomarkers of stroke etiology would be most helpful in management of acute ischemic stroke patients. Recently, circular RNAs (circRNAs) have been proposed as candidate biomarkers of neurological conditions due to its high stability. circRNAs function as sponges, sequestering miRNAs and are involved in most relevant biological functions. Our aim was to identify differentially expressed circRNAs in acute ischemic stroke patients according to stroke etiology.
Methods
A comprehensive expression profile of blood circRNAs was conducted by Arraystar Human circRNA arrays (13,617 probes) on a discovery cohort of 30 stroke patients with different stroke etiologies by TOAST classification. Real-time quantitative PCR (RT-qPCR) was used to validate array results in a cohort of 50 stroke patients. Functional in silico analysis was performed to identify potential interactions with microRNAs (miRNAs) and pathways underlying deregulated circRNAs.
Results
A set of 60 circRNAs were found to be upregulated in atherotrombotic versus cardioembolic strokes (fold-change > = 1.5 and p-value ≤ 0.05). Differential expression of hsa_circRNA_102488, originated from UBA52 gene, was replicated in the validation cohort. RNA-binding proteins (RBPs) sites of hsa_circRNA_102488 clustered around AGO2 and FUS proteins. Further functional analysis revealed interactions between deregulated circRNAs and a set of miRNAs involved in stroke-related pathways, such as fatty acid biogenesis or lysine degradation.
Conclusion
Different stroke subtypes show specific profiles of circRNAs expression. circRNAs may serve as a new source of biomarkers of stroke etiology in acute ischemic stroke patients.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献