ALKBH5-mediated m6A demethylation of Runx2 mRNA promotes extracellular matrix degradation and intervertebral disc degeneration

Author:

Lei Yu,Zhan Enyu,Chen Chao,Hu Yaoquan,Lv Zhengpin,He Qicong,Wang Xuenan,Li Xingguo,Zhang FanORCID

Abstract

Abstract Background N6-methyladenosine (m6A) methylation is a prevalent RNA modification implicated in various diseases. However, its role in intervertebral disc degeneration (IDD), a common cause of low back pain, remains unclear. Results In this investigation, we explored the involvement of m6A demethylation in the pathogenesis of IDD. Our findings revealed that ALKBH5 (alkylated DNA repair protein AlkB homolog 5), an m6A demethylase, exhibited upregulation in degenerative discs upon mild inflammatory stimulation. ALKBH5 facilitated m6A demethylation within the three prime untranslated region (3′-UTR) of Runx2 mRNA, consequently enhancing its mRNA stability in a YTHDF1 (YTH N6-methyladenosine RNA binding protein F1)-dependent manner. The subsequent elevation in Runx2 expression instigated the upregulation of ADAMTSs and MMPs, pivotal proteases implicated in extracellular matrix (ECM) degradation and IDD progression. In murine models, subcutaneous administration of recombinant Runx2 protein proximal to the lumbar disc in mice elicited complete degradation of intervertebral discs (IVDs). Injection of recombinant MMP1a and ADAMTS10 proteins individually induced mild to moderate degeneration of the IVDs, while co-administration of MMP1a and ADAMTS10 resulted in moderate to severe degeneration. Notably, concurrent injection of the Runx2 inhibitor CADD522 with recombinant Runx2 protein did not result in IVD degeneration in mice. Furthermore, genetic knockout of ALKBH5 and overexpression of YTHDF1 in mice, along with lipopolysaccharide (LPS) treatment to induce inflammation, did not alter the expression of Runx2, MMPs, and ADAMTSs, and no degeneration of the IVDs was observed. Conclusion Our study elucidates the role of ALKBH5-mediated m6A demethylation of Runx2 mRNA in activating MMPs and ADAMTSs, thereby facilitating ECM degradation and promoting the occurrence of IDD. Our findings suggest that targeting the ALKBH5/Runx2/MMPs/ADAMTSs axis may represent a promising therapeutic strategy for preventing IDD.

Funder

National Natural Science Foundation of China

The Major Science and Technology Project of Yunnan Provincial Department of Science and Technology and Yunnan Provincial Orthopedic and Sports Rehabilitation Clinical Medicine Research Center

535 Talent Project of First Affiliated Hospital of Kunming Medical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3