PA2G4 promotes the metastasis of hepatocellular carcinoma by stabilizing FYN mRNA in a YTHDF2-dependent manner

Author:

Sun Sheng,Liu Yiyang,Zhou Meiling,Wen Jinyuan,Xue Lin,Han Shenqi,Liang Junnan,Wang Yufei,Wei Yi,Yu Jinjin,Long Xin,Chen Xiaoping,Liang Huifang,Huang Zhao,Zhang BixiangORCID

Abstract

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high mortality. Advanced stage upon diagnosis and cancer metastasis are the main reasons for the dismal prognosis of HCC in large part. The role of proliferation associated protein 2G4 (PA2G4) in tumorigenesis and cancer progression has been widely investigated in various cancers. However, whether and how PA2G4 participates in HCC metastasis is still underexplored. Results We found that the mRNA and protein levels of PA2G4 were higher in HCC samples than in normal liver tissues, and high expression of PA2G4 in HCC was correlated with a poor prognosis, by an integrative analysis of immunohistochemistry (IHC), western blot and bioinformatic approach. Moreover, the expression of PA2G4 was elevated in HCC patients with metastases than those metastasis-free. Cell migration, invasion, phalloidin staining and western blot analyses demonstrated that PA2G4 promoted epithelial to mesenchymal transition (EMT) of HCC cells in vitro. And a lung metastasis animal model exhibited that PA2G4 enhanced metastatic ability of HCC cells in vivo. RNA-sequencing combined with dual luciferase reporter assay and evaluation of mRNA half-time indicated that PA2G4 increased FYN expression by stabilizing its mRNA transcript. Recovering the impaired FYN level induced by PA2G4 knockdown rescued the impeded cell mobilities. Furthermore, endogenous immunoprecipitation (IP) and in-situ immunofluorescence (IF) showed that YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) was the endogenous binding patterner of PA2G4. In addition, RNA binding protein immunoprecipitation (RIP) and anti- N6-methyladenosine immunoprecipitation (MeRIP) assays demonstrated that FYN mRNA was N6-methyladenosine (m6A) modified and bound with PA2G4, as well as YTHDF2. Moreover, the m6A catalytic ability of YTHDF2 was found indispensable for the regulation of FYN by PA2G4. At last, the correlation of expression levels between PA2G4 and FYN in HCC tissues was verified by IHC and western blot analysis. Conclusions These results indicate that PA2G4 plays a pro-metastatic role by increasing FYN expression through binding with YTHDF2 in HCC. PA2G4 may become a reliable prognostic marker or therapeutic target for HCC patients.

Funder

National Natural Science Foundation of China

the State Key Project on Infection Disease of China

the National Key Research and Development Program of China

the Major Technological Innovation Projects of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3