Author:
Bininda-Emonds Olaf RP,Jeffery Jonathan E,Sánchez-Villagra Marcelo R,Hanken James,Colbert Matthew,Pieau Claude,Selwood Lynne,ten Cate Carel,Raynaud Albert,Osabutey Casmile K,Richardson Michael K
Abstract
Abstract
Background
Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb.
Results
An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons) and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs.
Conclusion
Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this trait means that changes in chondrogenetic patterns may serve as useful phylogenetic characters at higher taxonomic levels in tetrapods. Our results highlight the more important role generally played by allometric heterochrony in this instance to shape adult morphology.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference34 articles.
1. Huxley JS: Problems of relative growth. 1932, London: Methuen
2. Polly PD: Limbs in mammalian evolution. Fins into Limbs: Evolution, Development and Transformation. Edited by: Hall BK. 2007, Chicago: University of Chicago Press
3. Shubin N, Tabin C, Carroll S: Fossils, genes and the evolution of animal limbs. Nature. 1997, 388: 639-648. 10.1038/41710.
4. Gould SJ: Ontogeny and Phylogeny. 1977, Cambridge, MA: Belknap Press
5. Smith KK: Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc. 2001, 73: 169-186. 10.1006/bijl.2001.0535.
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献