Phylogenomic analysis of vertebrate thrombospondins reveals fish-specific paralogues, ancestral gene relationships and a tetrapod innovation

Author:

McKenzie Patrick,Chadalavada Seetharam C,Bohrer Justin,Adams Josephine C

Abstract

Abstract Background Thrombospondins (TSPs) are evolutionarily-conserved, extracellular, calcium-binding glycoproteins with important roles in cell-extracellular matrix interactions, angiogenesis, synaptogenesis and connective tissue organisation. Five TSPs, designated TSP-1 through TSP-5, are encoded in the human genome. All but one have known roles in acquired or inherited human diseases. To further understand the roles of TSPs in human physiology and pathology, it would be advantageous to extend the repertoire of relevant vertebrate models. In general the zebrafish is proving an excellent model organism for vertebrate biology, therefore we set out to evaluate the status of TSPs in zebrafish and two species of pufferfish. Results We identified by bioinformatics that three fish species encode larger numbers of TSPs than vertebrates, yet all these sequences group as homologues of TSP-1 to -4. By phylogenomic analysis of neighboring genes, we uncovered that, in fish, a TSP-4-like sequence is encoded from the gene corresponding to the tetrapod TSP-5 gene. Thus, all TSP genes show conservation of synteny between fish and tetrapods. In the human genome, the TSP-1, TSP-3, TSP-4 and TSP-5 genes lie within paralogous regions that provide insight into the ancestral genomic context of vertebrate TSPs. Conclusion A new model for TSP evolution in vertebrates is presented. The TSP-5 protein sequence has evolved rapidly from a TSP-4-like sequence as an innovation in the tetrapod lineage. TSP biology in fish is complicated by the presence of additional lineage- and species-specific TSP paralogues. These novel results give deeper insight into the evolution of TSPs in vertebrates and open new directions for understanding the physiological and pathological roles of TSP-4 and TSP-5 in humans.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The evolution of tenascins;BMC Ecology and Evolution;2024-09-14

2. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix;International Journal of Experimental Pathology;2024-09-12

3. Molecular evolution of the Thrombospondin superfamily;Seminars in Cell & Developmental Biology;2024-03

4. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease?;American Journal of Physiology-Cell Physiology;2021-11-01

5. Thrombospondins Differentially Regulate Proteins Involved in Arterial Remodeling;Physiological Research;2019-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3