The metazoan history of the COE transcription factors. Selection of a variant HLH motif by mandatory inclusion of a duplicated exon in vertebrates

Author:

Daburon Virginie,Mella Sébastien,Plouhinec Jean-Louis,Mazan Sylvie,Crozatier Michèle,Vincent Alain

Abstract

Abstract Background The increasing number of available genomic sequences makes it now possible to study the evolutionary history of specific genes or gene families. Transcription factors (TFs) involved in regulation of gene-specific expression are key players in the evolution of metazoan development. The low complexity COE (Collier/Olfactory-1/Early B-Cell Factor) family of transcription factors constitutes a well-suited paradigm for studying evolution of TF structure and function, including the specific question of protein modularity. Here, we compare the structure of coe genes within the metazoan kingdom and report on the mechanism behind a vertebrate-specific exon duplication. Results COE proteins display a modular organisation, with three highly conserved domains : a COE-specific DNA-binding domain (DBD), an Immunoglobulin/Plexin/transcription (IPT) domain and an atypical Helix-Loop-Helix (HLH) motif. Comparison of the splice structure of coe genes between cnidariae and bilateriae shows that the ancestral COE DBD was built from 7 separate exons, with no evidence for exon shuffling with other metazoan gene families. It also confirms the presence of an ancestral H1LH2 motif present in all COE proteins which partly overlaps the repeated H2d-H2a motif first identified in rodent EBF. Electrophoretic Mobility Shift Assays show that formation of COE dimers is mediated by this ancestral motif. The H2d-H2a α-helical repetition appears to be a vertebrate characteristic that originated from a tandem exon duplication having taken place prior to the splitting between gnathostomes and cyclostomes. We put-forward a two-step model for the inclusion of this exon in the vertebrate transcripts. Conclusion Three main features in the history of the coe gene family can be inferred from these analyses: (i) each conserved domain of the ancestral coe gene was built from multiple exons and the same scattered structure has been maintained throughout metazoan evolution. (ii) There exists a single coe gene copy per metazoan genome except in vertebrates. The H2a-H2d duplication that is specific to vertebrate proteins provides an example of a novel vertebrate characteristic, which may have been fixed early in the gnathostome lineage. (iii) This duplication provides an interesting example of counter-selection of alternative splicing.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3