Molecular and immunological characterization of allergens from the entomopathogenic fungus Beauveria bassiana

Author:

Westwood Greg S,Huang Shih-Wen,Keyhani Nemat O

Abstract

Abstract Background Entomopathogenic fungi such as Beauveria bassiana are considered promising biological control agents for a variety of arthropod pests. Beauveria species, however, have the potential to elicit allergenic reactions in humans, although no specific allergens have been characterized to date. Methods Four putative allergens were identified within B. bassiana expressed sequence tag (EST) datasets. IgE-reactivity studies were performed using sera from patients displaying mold allergies against recombinant B. bassiana proteins expressed in E. coli. Results Full length cDNA and genomic nucleotide sequences of four potential B. bassiana allergens were isolated. BLASTX search results led to their putative designation as follows; Bb-Eno1, with similarity to fungal enolases; Bb-f2, similar to the Aspergillus fumigatus major allergen, Asp f2 and to a fibrinogen binding mannoprotein; Bb-Ald, similar to aldehyde dehydrogenases; and Bb-Hex, similar to N-acetyl-hexosaminadases. All four genes were cloned into E. coli expression systems and recombinant proteins were produced. Immunoblots of E. coli extracts probed with pooled as well as individual human sera from patients displaying mould allergies demonstrated IgE reactivity versus recombinant Bb-Eno1 and Bb-Ald. Conclusion Four putative Beauveria bassiana allergens were identified. Recombinant proteins corresponding to two of the four, Bb-Eno1 and Bb-Ald were bound by sera IgEs derived from patients with fungal allergies. These data confirm the potential allergenicity of B. bassiana by identification of specific human IgE reactive epitopes.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Immunology,Immunology and Allergy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3