Source characteristics of the 16 June 2020 ML 5.4 earthquake and its significant aftershock sequences, northern Red Sea, Egypt

Author:

Saadalla Hamada,Hamed Ahmad

Abstract

AbstractThe northern Red Sea in eastern Egypt is one of the world’s newest marine basins. The northern Red Sea is a very active seismic region and poses a significant hazard to the nearest cities on the Red Sea coast. On June 16, 2020, a moderate earthquake (ML = 5.4), as published by the Egyptian National Seismic Network (ENSN), occurred in the northern Red Sea followed by several aftershocks, ranging in magnitude from 2.0 to 3.4. The best-fitting double-couple movement obtained using the full waveform moment tensor inversion of the main earthquake indicated strike-slip movement, with a minor normal component. The two nodal main shock planes were oriented NNE–SSW and ESE–WNW, respectively. The aftershocks sequences distribution did not coincide with the 16 Jun, 2020 main earthquake, neither in map view nor with respect to depth which may pointed to a secondary fault plane activation and stress triggered by the mainshock. The aftershocks clustered at the north western side of the main earthquakes and extend in the north western direction, which supported that the ESE–WNW plane is the fault plane. The spectral parameters of the S-wave displacement spectra of the main earthquake and its significant aftershock sequences were determined using the spectral inversion method and Brune’s $$\omega^{2}$$ ω 2 modulation. The obtained spectra are flat in the frequency range from 0.8 Hz to each corner frequency, and they decreased rapidly at frequencies of < 10 Hz. The calculated seismic moment, moment magnitude, corner frequency, source radius, and stress drop vary from 8.293E+18 to 7.541E+22 dyn·cm, 2.4 to 5.0, 2.2 to 8.2 Hz, 171 to 633 m, and 0.02 to 13 MPa, respectively. The moment magnitude is equal to or slightly higher than the local magnitude reported by ENSN. The calculated stress drops for the earthquakes increased with increasing earthquake size.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3