Silica nanoparticles with encapsulated DNA (SPED) to trace the spread of pathogens in healthcare

Author:

Ullrich Cinzia,Luescher Anne M.,Koch Julian,Grass Robert N.,Sax HugoORCID

Abstract

Abstract Background To establish effective infection control protocols, understanding pathogen transmission pathways is essential. Non-infectious surrogate tracers may safely explore these pathways and challenge pre-existing assumptions. We used silica nanoparticles with encapsulated DNA (SPED) for the first time in a real-life hospital setting to investigate potential transmission routes of vancomycin-resistant enterococci in the context of a prolonged outbreak. Methods The two study experiments took place in the 900-bed University Hospital Zurich, Switzerland. A three-run ‘Patient experiment’ investigated pathogen transmission via toilet seats in a two-patient room with shared bathroom. First, various predetermined body and fomite sites in a two-bed patient room were probed at baseline. Then, after the first patient was contaminated with SPED at the subgluteal region, both patients sequentially performed a toilet routine. All sites were consequently swabbed again for SPED contamination. Eight hours later, further spread was tested at predefined sites in the patient room and throughout the ward. A two-run ‘Mobile device experiment’ explored the potential transmission by mobile phones and stethoscopes in a quasi-realistic setting. All SPED contamination statuses and levels were determined by real-time qPCR. Results Over all three runs, the ‘Patient experiment’ yielded SPED in 59 of 73 (80.8%) predefined body and environmental sites. Specifically, positivity rates were 100% on subgluteal skin, toilet seats, tap handles, and entertainment devices, the initially contaminated patients’ hands; 83.3% on patient phones and bed controls; 80% on intravenous pumps; 75% on toilet flush plates and door handles, and 0% on the initially not contaminated patients’ hands. SPED spread as far as doctor’s keyboards (66.6%), staff mobile phones (33.3%) and nurses’ keyboards (33.3%) after eight hours. The ‘Mobile device experiment’ resulted in 16 of 22 (72.7%) positive follow-up samples, and transmission to the second patient occurred in one of the two runs. Conclusions For the first time SPED were used to investigate potential transmission pathways in a real hospital setting. The results suggest that, in the absence of targeted cleaning, toilet seats and mobile devices may result in widespread transmission of pathogens departing from one contaminated patient skin region.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

Reference55 articles.

1. WHO. Report on the endemic burden of healthcare-associated infection Worldwide. World Health Organization; 2011.

2. WHO guidelines on hand hygiene in health care: First global patient safety challenge clean care is safer care. 2009.

3. O’Neill J. Antimicrobial resistance antimicrobial resistance: tackling a crisis for the health and wealth of nations. mSystems. 2014;6:e0036021.

4. Buetti N, Wassilew N, Rion V, Senn L, Gardiol C, Widmer A, et al. Emergence of vancomycin-resistant enterococci in Switzerland: a nation-wide survey. Antimicrob Resist Infect Control. 2019;8:16.

5. Thierfelder C, Keller PM, Kocher C, Gaudenz R, Hombach M, Bloemberg GV, et al. Vancomycin-resistant enterococcus. Swiss Med Wkly. 2012;142:w13540.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3