Prevalence and characterization of antimicrobial resistance among gram-negative bacteria isolated from febrile hospitalized patients in central Ethiopia
-
Published:2022-01-15
Issue:1
Volume:11
Page:
-
ISSN:2047-2994
-
Container-title:Antimicrobial Resistance & Infection Control
-
language:en
-
Short-container-title:Antimicrob Resist Infect Control
Author:
Tufa Tafese BeyeneORCID, Mackenzie Colin R., Orth Hans Martin, Wienemann Tobias, Nordmann Tamara, Abdissa Sileshi, Hurissa Zewdu, Schönfeld Andreas, Bosselmann Matthias, Häussinger Dieter, Pfeffer Klaus, Luedde Tom, Fuchs Andre, Feldt Torsten
Abstract
Abstract
Background
Infectious diseases are among the leading causes of death in many low-income countries, such as Ethiopia. Without reliable local data concerning causative pathogens and antimicrobial resistance, empiric treatment is suboptimal. The objective of this study was to characterize gram-negative bacteria (GNB) as pathogens and their resistance pattern in hospitalized patients with infections in central Ethiopia.
Methods
Patients ≥ 1 year of age with fever admitted to the Asella Referral and Teaching Hospital from April 2016 to June 2018 were included. Blood and other appropriate clinical specimens were collected and cultured on appropriate media. Antibiotic susceptibility testing (AST) was performed using the Kirby–Bauer method and VITEK® 2. Species identification and detection of resistance genes were conducted using MALDI-ToF MS (VITEK® MS) and PCR, respectively.
Results
Among the 684 study participants, 54.2% were male, and the median age was 22.0 (IQR: 14–35) years. Blood cultures were positive in 5.4% (n = 37) of cases. Among other clinical samples, 60.6% (20/33), 20.8% (5/24), and 37.5% (3/8) of swabs/pus, urine and other body fluid cultures, respectively, were positive. Among 66 pathogenic isolates, 57.6% (n = 38) were GNB, 39.4% (n = 26) were gram-positive, and 3.0% (n = 2) were Candida species. Among the isolated GNB, 42.1% (16/38) were Escherichia coli, 23.7% (9/38) Klebsiella pneumoniae and 10.5% (4/38) Pseudomonas aeruginosa.
In total, 27/38 gram-negative isolates were available for further analysis. Resistance rates were as follows: ampicillin/sulbactam, 92.6% (n = 25); cefotaxime, 88.9% (n = 24); ceftazidime, 74.1% (n = 20); cefepime, 74.1% (n = 20); gentamicin, 55.6% (n = 15); piperacillin/tazobactam, 48.1% (n = 13); meropenem, 7.4% (n = 2); and amikacin, 3.7% (n = 1). The blaNDM-1 gene was detected in one K. pneumoniae and one Acinetobacter baumannii isolate, which carried an additional blaOXA-51 gene. The ESBL enzymes were detected in 81.5% (n = 22) of isolates as follows: TEM, 77.2% (n = 17); CTX-M-1 group, 68.2% (n = 15); SHV group, 27.3% (n = 6); and CTX-M-9 group, 9.1% (n = 2). Based on the in vitro antimicrobial susceptibility results, empiric treatment initiated in 13 of 18 (72.2%) patients was likely ineffective.
Conclusion
We report a high prevalence of ESBL-producing bacteria (81.5%) and carbapenem resistance (7.4%), with more than half of GNB carrying two or more ESBL enzymes resulting in suboptimal empiric antibiotic therapy. These findings indicate a need for local and national antimicrobial resistance surveillance and the strengthening of antimicrobial stewardship programs.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference33 articles.
1. Misganaw A, Haregu TN, Deribe K, Tessema GA, Deribew A, Melaku YA, Amare AT, Abera SF, Gedefaw M, Dessalegn M, Lakew Y, Bekele T, Mohammed M, Yirsaw BD, Damtew SA, Krohn KJ, Achoki T, Blore J, Assefa Y, Naghavi M. National mortality burden due to communicable, non-communicable, and other diseases in Ethiopia, 1990–2015: findings from the Global Burden of Disease Study 2015. Popul Health Metr. 2017;15:29. 2. Alosaimy S, Jorgensen SCJ, Lagnf AM, Melvin S, Mynatt RP, Carlson TJ, Garey KW, Allen D, Venugopalan V, Veve M, Athans V, Saw S, Yost CN, Davis SL, Rybak MJ. 2020. Real-world multicenter analysis of clinical outcomes and safety of meropenem-vaborbactam in patients treated for serious gram-negative bacterial infections. Open Forum Infect Dis 7:ofaa051. 3. CDC. 2019. Antibiotic resistance threats in the United States. Atlanta, GA: US Department of Health and Human Services, CDC; 2019 wwwcdcgov/DrugResistance/Biggest-Threatshtml. 4. Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care. 2015;5:61. 5. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72:2145–55.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|