Abstract
Abstract
Background
Logistical and economic barriers hamper community-level surveillance for antimicrobial-resistant bacteria in low-income countries. Latrines are commonly used in these settings and offer a low-cost source of surveillance samples. It is unclear, however, whether antimicrobial resistance prevalence estimates from latrine samples reflect estimates generated from randomly sampled people.
Methods
We compared the prevalence of antimicrobial-resistant enteric bacteria from stool samples of people residing in randomly selected households within Kibera—an informal urban settlement in Kenya—to estimates from latrine samples within the same community. Fecal samples were collected between November 2015 and Jan 2016. Presumptive Escherichia coli isolates were collected from each household stool sample (n = 24) and each latrine sample (n = 48), resulting in 8935 and 8210 isolates, respectively. Isolates were tested for resistance to nine antibiotics using the replica-plating technique. Correlation- and Kolmogorov–Smirnov (K–S) tests were used to compare results.
Results
Overall, the prevalence values obtained from latrine samples closely reflected those from stool samples, particularly for low-prevalence (< 15%) resistance phenotypes. Similarly, the distribution of resistance phenotypes was similar between latrine and household samples (r > 0.6; K–S p-values > 0.05).
Conclusions
Although latrine samples did not perfectly estimate household antimicrobial resistance prevalence, they were highly correlated and thus could be employed as low-cost samples to monitor trends in antimicrobial resistance, detect the emergence of new resistance phenotypes and assess the impact of community interventions.
Funder
Paul G. Allen School for Global Health
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health
Reference25 articles.
1. World Health Organization, WHO. Antimicrobial Resistance: Global Report on surveillance. Geneva; 2014. https://apps.who.int/iris/handle/10665/112642. Accessed 13 May 2021.
2. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–18.
3. Omulo S, Lofgren ET, Lockwood S, Thumbi SM, Bigogo G, Ouma A, et al. Carriage of antimicrobial-resistant bacteria in a high-density informal settlement in Kenya is associated with environmental risk-factors. Antimicrob Resist Infect Control. 2021;10(1):1–12.
4. Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, Pajuelo MJ, Saito M, et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol. 2020;5:787–95.
5. Subbiah M, Caudell MA, Mair C, Davis MA, Matthews L, Quinlan RJ, et al. Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nat Commun. 2020;11(1):1–12.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献