Confidence interval methods for antimicrobial resistance surveillance data

Author:

Kalanxhi Erta,Osena Gilbert,Kapoor Geetanjali,Klein Eili

Abstract

Abstract Background Antimicrobial resistance (AMR) is one of the greatest global health challenges today, but burden assessment is hindered by uncertainty of AMR prevalence estimates. Geographical representation of AMR estimates typically pools data collected from several laboratories; however, these aggregations may introduce bias by not accounting for the heterogeneity of the population that each laboratory represents. Methods We used AMR data from up to 381 laboratories in the United States from The Surveillance Network to evaluate methods for estimating uncertainty of AMR prevalence estimates. We constructed confidence intervals for the proportion of resistant isolates using (1) methods that account for the clustered structure of the data, and (2) standard methods that assume data independence. Using samples of the full dataset with increasing facility coverage levels, we examined how likely the estimated confidence intervals were to include the population mean. Results Methods constructing 95% confidence intervals while accounting for possible within-cluster correlations (Survey and standard methods adjusted to employ cluster-robust errors), were more likely to include the sample mean than standard methods (Logit, Wilson score and Jeffreys interval) operating under the assumption of independence. While increased geographical coverage improved the probability of encompassing the mean for all methods, large samples still did not compensate for the bias introduced from the violation of the data independence assumption. Conclusion General methods for estimating the confidence intervals of AMR rates that assume data are independent, are likely to produce biased results. When feasible, the clustered structure of the data and any possible intra-cluster variation should be accounted for when calculating confidence intervals around AMR estimates, in order to better capture the uncertainty of prevalence estimates.

Funder

Fleming Fund

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health

Reference37 articles.

1. Centers for Disease Control and Prevention. Antibiotic Resistance Threatens Everyone [Internet]. Centers Dis. Control Prev. 2020 [cited 2020 Jul 23]. https://www.cdc.gov/drugresistance/about.html.

2. Burnham JP, Olsen MA, Kollef MH. Re-estimating annual deaths due to multidrug-resistant organism infections. Infect Control Hosp Epidemiol [Internet]. 2019;40:112–3.

3. World Health Organization. Global Action Plan on Antimicrobial Resistance. [Internet]. 2015. [cited 2020 Jul 23]. https://www.who.int/antimicrobial-resistance/global-action-plan/en/.

4. Centers for Disease Control and Prevention. National Action Plan for combating antibiotic-resistant bacteria [Internet]. Natl. Strateg. Action Plan Combat. Antibiot. Resist. Bact. 2015 [cited 2020 Jul 23]. https://aspe.hhs.gov/pdf-report/carb-plan-2020-2025.

5. World Health Organization (WHO). Record number of countries contribute data revealing disturbing rates of antimicrobial resistance [Internet]. 2020 [cited 2020 Nov 24]. https://www.who.int/news/item/01-06-2020-record-number-of-countries-contribute-data-revealing-disturbing-rates-of-antimicrobial-resistance.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3