Variations in preservation of exceptional fossils within concretions

Author:

Saleh FaridORCID,Clements Thomas,Perrier Vincent,Daley Allison C.,Antcliffe Jonathan B.

Abstract

AbstractConcretions are an interesting mode of preservation that can occasionally yield fossils with soft tissues. To properly interpret these fossils, an understanding of their fossilization is required. Probabilistic models are useful tools to identify variations between different Konservat-Lagerstätten that are separated spatially and temporally. However, the application of probabilistic modeling has been limited to Early Paleozoic Konservat-Lagerstätten preserved in shales. In this paper, the patterns of preservation of three concretionary Konservat-Lagerstätten—the Carboniferous Mazon Creek (USA) and Montceau-les-Mines (France), and the Silurian Herefordshire Lagerstätte (UK)—are analyzed using a statistical approach. It is demonstrated that the degree of biotic involvement, i.e., the degree to which a carcass dictates its own preservation, is connected to internal organ conditional probabilities—the probabilities of finding an internal organ associated with another structure such as biomineralized, sclerotized, cuticularized, or cellular body walls. In concretions that are externally forced with little biological mediation (e.g., Herefordshire), all internal organ conditional probabilities are uniform. As biological mediation in concretion formation becomes more pronounced, heterogeneities in conditional probabilities are introduced (e.g., Montceau-les-Mines and Mazon Creek). The three concretionary sites were also compared with previously investigated Konservat-Lagerstätten preserving fossils in shales to demonstrate how the developed probability framework aids in understanding the broad-scale functioning of preservation in Konservat-Lagerstätten.

Funder

Faculty of Geoscience and Environment of the University of Lausanne

Leverhulme Early Career Fellowship

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Lausanne

Publisher

Springer Science and Business Media LLC

Subject

Paleontology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3