A novel method for robust markerless tracking of rodent paws in 3D

Author:

Haji Maghsoudi OmidORCID,Vahedipour Annie,Spence Andrew

Abstract

AbstractStudying animal locomotion improves our understanding of motor control and aids in the treatment of motor impairment. Mice are a premier model of human disease and are the model system of choice for much of basic neuroscience. Placement of the tips of appendages, here paws, is typically critical for locomotion. Tracking paws from a video is difficult, however, due to frequent occlusions and collisions. We propose a method and provide software to track the paws of rodents. We use a superpixel-based method to segment the paws, direct linear transform to perform 3D reconstruction, a 3D Kalman filter (KF) to solve the matching problem and label paws across frames, and spline fits through time to resolve common collisions. The automated method was compared to manual tracking. The method had an average of 2.54 mistakes requiring manual correction per 1000 frames with a maximum of 5.29 possible errors while these values were estimates of the expected errors. We present an algorithm and its implementation to track the paws of running rodents. This algorithm can be applied to different animals as long as the tips of the legs can be differentiated from the background and other parts of the body using color features. The presented algorithm provides a robust tool for future studies in multiple fields, where precise quantification of locomotor behavior from a high-speed video is required. We further present a graphical user interface (GUI) to track, visualize, and edit the tracking data.

Funder

Neilsen Foundation Senior Research Grant

Shriners Hospitals for Children

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3