Transcriptome analysis of lateral buds from Phyllostachys edulis rhizome during germination and early shoot stages

Author:

Shou Yuting,Zhu Yihua,Ding Yulong

Abstract

Abstract Background The vegetative growth is an important stage for plants when they conduct photosynthesis, accumulate and collect all resources needed and prepare for reproduction stage. Bamboo is one of the fastest growing plant species. The rapid growth of Phyllostachys edulis results from the expansion of intercalary meristem at the basal part of nodes, which are differentiated from the apical meristem of rhizome lateral buds. However, little is known about the major signaling pathways and players involved during this rapid development stage of bamboo. To study this question, we adopted the high-throughput sequencing technology and compared the transcriptomes of Moso bamboo rhizome buds in germination stage and late development stage. Results We found that the development of Moso bamboo rhizome lateral buds was coordinated by multiple pathways, including meristem development, sugar metabolism and phytohormone signaling. Phytohormones have fundamental impacts on the plant development. We found the evidence of several major hormones participating in the development of Moso bamboo rhizome lateral bud. Furthermore, we showed direct evidence that Gibberellic Acids (GA) signaling participated in the Moso bamboo stem elongation. Conclusion Significant changes occur in various signaling pathways during the development of rhizome lateral buds. It is crucial to understand how these changes are translated to Phyllostachys edulis fast growth. These results expand our knowledge on the Moso bamboo internodes fast growth and provide research basis for further study.

Funder

Natural Science Foundation of Jilin Province

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference58 articles.

1. Beveridge CA, Mathesius U, Rose RJ, Gresshoff PM. Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol. 2007;10(1):44–51.

2. Fu J. Chinese moso bamboo: its importance. Bamboo. 2001;22(5):5–7.

3. Erfa ZYHWQ, Liguang C. Hormone content and distribution in Phyllostachys heterocycla cv. pubescens during period of shoot emergence. Sci Silvae Sin. 1998;S1..

4. He X-Q, Suzuki K, Kitamura S, Lin J-X, Cui K-M, Itoh T. Toward understanding the different function of two types of parenchyma cells in bamboo culms. Plant Cell Physiol. 2002;43(2):186–95.

5. Li X, Shupe T, Peter G, Hse C, Eberhardt T. Chemical changes with maturation of the bamboo species Phyllostachys pubescens. J Trop For Sci. 2007;19(1):6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3