Proteomic analysis of the faba bean-wheat intercropping system in controlling the occurrence of faba bean fusarium wilt due to stress caused by Fusarium oxysporum f. sp. fabae and benzoic acid

Author:

Hu Bijie,Zheng Yiran,Lv Jiaxing,Zhang Jing,Dong Yan

Abstract

Abstract Background In faba bean, continuous cropping severely affects plant growth and increases the incidence of fusarium wilt due to the accumulation of pathogens and autotoxic substances. The intercropping of faba bean and wheat is commonly used to alleviate the occurrence of fusarium wilt in the faba bean. Objective To investigate the role of Fusarium oxysporum f. sp. Fabae(FOF) and benzoic acid in the occurrence of faba bean fusarium wilt and unravel the potential mechanism of intercropping in alleviating its occurrence. Methods Hydroponic experiment was carried out using monocropping faba bean (M) and intercropping faba bean and wheat (I) patterns under FOF alone stress (M + F, I + F), FOF and benzoic acid double stress (M + F + B, I + F + B). The growth of faba bean seedlings under FOF and benzoic acid dual stresses were analyzed as well as the protein expression profile of monocropping and intercropping faba bean roots. Result Under FOF stress, the growth of faba bean seedlings was inhibited, and the inhibitory effect was enhanced under the dual stress of FOF and benzoic acid. However, faba bean-wheat intercropping alleviated the inhibitory effect of FOF and benzoic acid on faba bean growth. In faba bean, the up-regulated protein was involved in different functions, such as redox, hydrogen peroxide decomposition, and metabolic processes under FOF stress (M + F, I + F) compared to the control. Compared with FOF stress (M + F, I + F), under the dual stress of FOF and benzoic acid (M + F + B, I + F + B), the up-regulated protein in faba bean were involved in intracellular redox balance, defense, and maintenance of cell integrity. Compared with monocropping (M, M + F, M + F + B), the up-regulated protein function of intercropping(I, I + F, I + F + B) was mainly involved in the biosynthesis of secondary metabolites, redox balance, biological carbon fixation of photosynthesis, and so on. KEGG enrichment analysis results showed that intercropping increased ethylene and jasmonic acid synthesis and other related pathways to improve resistance against fusarium wilt in the faba bean. Conclusion The growth of faba bean was inhibited under FOF stress and the inhibitory effect was enhanced under the dual stress of FOF and benzoic acid, which promoted the occurrence of faba bean fusarium wilt. This might be due to the down-regulation of energy and cytoplasmic matrix proteins under FOF and benzoic acid stress. The faba bean wheat intercropping alleviated the inhibition of FOF and benzoic acid stress by up-regulating the biosynthesis of secondary metabolites, redox homeostasis, photosynthetic carbon fixation, and other related proteins. Besides, it also promoted the biosynthesis of ethylene, and jasmonic acid, improved the resistance of faba bean plants, and alleviated the occurrence of faba bean fusarium wilt. This provides a theoretical basis for the determination of jasmonic acid and ethylene content.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3