Genome-wide identification, evolutionary and expression analysis of the cyclin-dependent kinase gene family in peanut

Author:

S Gokul Babu,Gohil Deependra Singh,Roy Choudhury SwarupORCID

Abstract

Abstract Background Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases that have multi-faceted functions in eukaryotes. The plant CDK members have well-known roles in cell cycle progression, transcriptional regulation, DNA repair, abiotic stress and defense responses, making them promising targets for developing stress adaptable high-yielding crops. There is relatively sparse information available on the CDK family genes of cultivated oilseed crop peanut and its diploid progenitors. Results We have identified 52 putative cyclin-dependent kinases (CDKs) and CDK-like (CDKLs) genes in Arachis hypogaea (cultivated peanut) and total 26 genes in each diploid parent of cultivated peanut (Arachis duranensis and Arachis ipaensis). Both CDK and CDKL genes were classified into eight groups based on their cyclin binding motifs and their phylogenetic relationship with Arabidopsis counterparts. Genes in the same subgroup displayed similar exon–intron structure and conserved motifs. Further, gene duplication analysis suggested that segmental duplication events played major roles in the expansion and evolution of CDK and CDKL genes in cultivated peanutsIdentification of diverse cis-acting response elements in CDK and CDKL genes promoter indicated their potential fundamental roles in multiple biological processes. Various gene expression patterns of CDKs and CDKLs in different peanut tissues suggested their involvement during growth and development. In addition, qRT-PCR analysis demonstrated that most representing CDK and CDKL gene family members were significantly down-regulated under ABA, PEG and mannitol treatments. Conclusions Genome-wide analysis offers a comprehensive understanding of the classification, evolution, gene structure, and gene expression profiles of CDK and CDKL genes in cultivated peanut and their diploid progenitors. Additionally, it also provides cell cycle regulatory gene resources for further functional characterization to enhance growth, development and abiotic stress tolerance.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3