A broad spectrum of host plant responses to the actions of the gall midge: case study of Robinia pseudoacacia L. and Obolodiplosis robiniae (Haldeman)

Author:

Staszak Aleksandra M.,Ratajczak EwelinaORCID,Leśniewska JoannaORCID,Piotrowska-Niczyporuk AlicjaORCID,Kostro-Ambroziak AgataORCID

Abstract

AbstractThis study aims to provide insights into plant-insect interaction during the formation and development of open gall structure on the leaves of Robinia pseudoacacia during gall formation by Obolodiplosis robiniae. This was the first time such far-reaching studies were performed at a biochemical and anatomical level. The gall wall is created from a few thick cells covered with epidermis. This parenchymatous nutritive tissue is rich in starch. Sclerenchyma only occurs around the vascular bundles as a result of the lignification of the parenchyma of the bundle sheaths. The level of reactive oxygen species (ROS) in the new structure was reduced and catalase activity was inhibited, which suggests another pathway of ROS decomposition – e.g. by ascorbate or glutathione peroxidase. The gall structure was combined with an increasing level of protein and non-protein thiols. Phenols seems to be a good protective factor; whose level was lower in infected leaflets. Levels of MUFA (monosaturated fatty acids) and SFA (saturated fatty acids) rose, probably as source of food for insects. The amount of fatty acid is positively correlated with the plant response. We detected that non infected leaflets produced C6:0 (hexanoic acid) and C8:0 (octanoic acid) fatty acids connected with odor. Changes in gall color as they develop are connected with photosynthetic pigments degradation (mainly chlorophylls) where the pathway of astaxanthin transformation to fatty acid is considered to be the most important process during gall maturation. Nutritive tissue is composed mainly of octadecanoic acid (C18:0) – a main source of food for O. robiniae.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3