Abstract
Abstract
Background
Common bean (Phaseolus vulgaris L.) is a legume whose grain can be stored for months, a common practice among Brazilian growers. Over time, seed coats become darker and harder to cook, traits that are undesirable to consumers, who associate darker-colored beans with greater age. Like commercial pinto and cranberry bean varieties, carioca beans that have darker seeds at harvest time and after storage are subject to decreased market values.
Results
The goal of our study was to identify the genetic control associated with lightness of seed coat color at harvest (HL) and with tolerance to post-harvest seed coat darkening (PHD) by a genome-wide association study. For that purpose, a carioca diversity panel previously validated for association mapping studies was used with 138 genotypes and 1,516 high-quality SNPs. The panel was evaluated in two environments using a colorimeter and the CIELAB scale. Shelf storage for 30 days had the most expressive results and the L* (luminosity) parameter led to the greatest discrimination of genotypes. Three QTL were identified for HL, two on chromosome Pv04 and one on Pv10. Regarding PHD, results showed that genetic control differs for L* after 30 days and for the ΔL* (final L*—initial L*); only ΔL* was able to properly express the PHD trait. Four phenotypic classes were proposed, and five QTL were identified through six significant SNPs.
Conclusions
Lightness of seed coat color at harvest showed an oligogenic inheritance corroborated by moderate broad-sense heritability and high genotypic correlation among the experiments. Only three QTL were significant for this trait – two were mapped on Pv04 and one on Pv10. Considering the ΔL, six QTL were mapped on four different chromosomes for PHD. The same HL QTL at the beginning of Pv10 was also associated with ΔL* and could be used as a tool in marker-assisted selection. Several candidate genes were identified and may be useful to accelerate the genetic breeding process.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.) - Model food legumes. Plant Soil. 2003;252:55–128.
2. Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, et al. Genomics of origin, domestication and evolution of phaseolus vulgaris. In: Tuberosa R., Graner A. FE, editor. Genomics of Plant Genetic Resources: 1st edition. Dordrecht: Springer Netherlands; 2014. p. 483–507.
3. Pires CV, Oliveira MGA, Cruz GADR, Mendes FQ, De Rezende ST, Moreira MA. Composição físico-química de diferentes cultivares de feijão (Phaseolus vulgaris L.). Aliment e Nutr Araraquara. 2005;16:157–62.
4. Polya G. Biochemical targets of plant bioactive compounds: a pharmacological reference guide to sites of action and biological effects. New York; 2003.
5. Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014;46:707–13.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献