Author:
Grzybowski Marcin W.,Zwiener Mackenzie,Jin Hongyu,Wijewardane Nuwan K.,Atefi Abbas,Naldrett Michael J.,Alvarez Sophie,Ge Yufeng,Schnable James C.
Abstract
Abstract
Background
Access to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited.
Results
Here we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions.
Conclusion
Our results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model.
Funder
U.S. Department of Energy
USDA-NIFA
Foundation for Food and Agriculture Research
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Malthus TR. An essay on the principle of population, as it affects the future imporvement of society, with remarks on the speculations of Mr. Godwin, M. Condorcet, and other writers. London: J. Johnson; 1798.
2. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci. 2008;1(10):636–9.
3. Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. Managing nitrogen for sustainable development. Nature. 2015;528(7580):51–9.
4. Rothstein SJ. Returning to our roots: making plant biology research relevant to future challenges in agriculture. Plant Cell. 2007;19(9):2695–9.
5. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, et al. Solutions for a cultivated planet. Nature. 2011;478(7369):337–42.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献