Selenium and its nanoparticles modulate the metabolism of reactive oxygen species and morpho-physiology of wheat (Triticum aestivum L.) to combat oxidative stress under water deficit conditions

Author:

Hasanuzzaman Mirza,Raihan Md. Rakib Hossain,Siddika Ayesha,Bardhan Kirti,Hosen Md. Sarwar,Prasad P. V. Vara

Abstract

Abstract Background Wheat (Triticum aestivum L.) is one of the most important cereal crop species worldwide, but its growth and development are adversely influenced by drought stress. However, the application of trace elements is known to improve plant physiology under water-limited conditions. In this study, the effects of drought stress on wheat plants were investigated, with a focus on potential mitigation by foliar application of selenium nanoparticles (Se(np)) and sodium selenate (Na2SeO4). The experiment was conducted in a net house using a completely randomized design with four replications. The treatments involved three levels of drought stress (mild, moderate, and severe) started at 30 days after sowing (DAS), with foliar sprays of Se(np) and Se (both 25 µM) initiated at 27 DAS and repeated 4 times at 7-day intervals until 55 DAS. Results Drought stress significantly reduced plant growth, whereas Se(np) and Se sprays enhanced it. Drought stress induced chlorophyll degradation, increased malondialdehyde and hydrogen peroxide levels, impaired membrane stability, and caused electrolyte leakage. Severe drought stress reduced the levels of antioxidants (e.g., proline, ascorbate, and glutathione by 4.18-fold, 80%, and 45%) and the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, and others). Conversely, treatment with Se(np) and Se restored these parameters, for example, 1.23-fold higher total chlorophyll content with Se(np) treatment, 26% higher APX activity with Se treatment, 15% lower electrolyte leakage with Se treatment in wheat plants under severe drought stress. This Se-associated enhancement facilitated rapid scavenging of reactive oxygen species and reduced methylglyoxal toxicity, thereby diminishing oxidative stress and positively affecting the morphophysiological and biochemical responses of the plants under drought. Conclusions Drought-stressed wheat plants exhibited reductions in physiological processes, including water uptake and photosynthetic activity. However, Se(np) and Se applied at 25 µM mitigated the detrimental effects of drought. The application of Se(np) was notably more effective than the application of Se in mitigating drought stress, indicating the potential of the application of Se(np) as a sustainable agricultural practice under water-limited conditions.

Funder

United States Agency for International Development

University Grants Commission of Bangladesh

Publisher

Springer Science and Business Media LLC

Reference66 articles.

1. Prodhan FA, Zhang J, Pangali Sharma TP, Nanzad L, Zhang D, Seka AM, Ahmed N, Hasan SS, Hoque MZ, Mohana HP. Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach. Sci Total Environ. 2022;807:151029.

2. Vicente-Serrano SM, Peña-Angulo D, Beguería S, Domínguez-Castro F, Tomás-Burguera M, Noguera I, Gimeno-Sotelo L, Kenawy AE. Global drought trends and future projections. Philos Transact R Soc Math Phys Eng Sci. 2022;380:20210285.

3. FAOSTAT. Statistical database. Rome: Food and Agriculture Organization of the United Nations; 2021.

4. Wan C, Dang P, Gao L, Wang J, Tao J, Qin X, Feng B, Gao J. How does the environment affect wheat yield and protein content response to drought? A meta-analysis. Front Plant Sci. 2022;13:896985.

5. IPCC. Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Portner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, P´ean C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T, editors. Global warming of 1.5℃; an IPCC special report on the impacts of global warming of 1.5℃ above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization: Geneva, Switzerland. 2018. p. 32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3