Transcriptome analysis provides insights into light condition effect on paclitaxel biosynthesis in yew saplings

Author:

Li Taotao,Li Bingbing,Liao Chunli,Zhang Huamin,Wang Lianzhe,Fu Taotao,Xue Shouyu,Sun Tao,Xu Xiaolan,Fan Xin,Li Le,Liu Genglin,Yang Fengling,Ma Xuan

Abstract

Abstract Background Taxus is a rare gymnosperm plant that is the sole producer of the anticancer drug paclitaxel. The growth and development of Taxus is affected by environmental factors such as light. However, little is known about how light conditions affect growth and metabolic processes, especially paclitaxel biosynthesis. Results In this study, we applied three different light conditions to Taxus chinensis young saplings and investigated the physiological response and gene expression. Our observations showed that exposure to high light led to oxidative stress, caused photoinhibition, and damaged the photosynthetic systems in T. chinensis. The paclitaxel content in T. chinensis leaves was significantly decreased after the light intensity increased. Transcriptomic analysis revealed that numerous genes involved in paclitaxel biosynthesis and phenylpropanoid metabolic pathways were downregulated under high light. We also analyzed the expression of JA signaling genes, bHLH, MYB, AP2/ERF transcription factors, and the CYP450 families that are potentially related to paclitaxel biosynthesis. We found that several CYP450s, MYB and AP2/ERF genes were induced by high light. These genes may play an important role in tolerance to excessive light or heat stress in T. chinensis. Conclusions Our study elucidates the molecular mechanism of the effects of light conditions on the growth and development of T. chinensis and paclitaxel biosynthesis, thus facilitating the artificial regeneration of Taxus and enhancing paclitaxel production.

Funder

National Natural Science Foundation of China

Project of Young Backbone Teachers of Henan University of Urban Construction

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3