Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time

Author:

Theine JensORCID,Holtgräwe DanielaORCID,Herzog Katja,Schwander Florian,Kicherer Anna,Hausmann  LudgerORCID,Viehöver Prisca,Töpfer ReinhardORCID,Weisshaar BerndORCID

Abstract

Abstract Background Grapevine cultivars of the Pinot family represent clonally propagated mutants with major phenotypic and physiological differences, such as different colour or shifted ripening time, as well as changes in important viticultural traits. Specifically, the cultivars ‘Pinot Noir’ (PN) and ‘Pinot Noir Precoce’ (PNP, early ripening) flower at the same time, but vary in the beginning of berry ripening (veraison) and, consequently, harvest time. In addition to genotype, seasonal climatic conditions (i.e. high temperatures) also affect ripening times. To reveal possible regulatory genes that affect the timing of veraison onset, we investigated differences in gene expression profiles between PN and PNP throughout berry development with a closely meshed time series and over two separate years. Results The difference in the duration of berry formation between PN and PNP was quantified to be approximately two weeks under the growth conditions applied, using plant material with a proven PN and PNP clonal relationship. Clusters of co-expressed genes and differentially expressed genes (DEGs) were detected which reflect the shift in the timing of veraison onset. Functional annotation of these DEGs fit to observed phenotypic and physiological changes during berry development. In total, we observed 3,342 DEGs in 2014 and 2,745 DEGs in 2017 between PN and PNP, with 1,923 DEGs across both years. Among these, 388 DEGs were identified as veraison-specific and 12 were considered as berry ripening time regulatory candidates. The expression profiles revealed two candidate genes for ripening time control which we designated VviRTIC1 and VviRTIC2 (VIT_210s0071g01145 and VIT_200s0366g00020, respectively). These genes likely contribute the phenotypic differences observed between PN and PNP. Conclusions Many of the 1,923 DEGs show highly similar expression profiles in both cultivars if the patterns are aligned according to developmental stage. In our work, putative genes differentially expressed between PNP and PN which could control ripening time as well as veraison-specific genes were identified. We point out connections of these genes to molecular events during berry development and discuss potential candidate genes which may control ripening time. Two of these candidates were observed to be differentially expressed in the early berry development phase. Several down-regulated genes during berry ripening are annotated as auxin response factors / ARFs. Conceivably, general changes in auxin signaling may cause the earlier ripening phenotype of PNP.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference87 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3