Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance

Author:

Bhattarai Krishna,Conesa Ana,Xiao Shunyuan,Peres Natalia A.,Clark David G.,Parajuli Saroj,Deng ZhanaoORCID

Abstract

Abstract Background RNA sequencing has been widely used to profile genome-wide gene expression and identify candidate genes controlling disease resistance and other important traits in plants. Gerbera daisy is one of the most important flowers in the global floricultural trade, and powdery mildew (PM) is the most important disease of gerbera. Genetic improvement of gerbera PM resistance has become a crucial goal in gerbera breeding. A better understanding of the genetic control of gerbera resistance to PM can expedite the development of PM-resistant cultivars. Results The objectives of this study were to identify gerbera genotypes with contrasting phenotypes in PM resistance and sequence and analyze their leaf transcriptomes to identify disease resistance and susceptibility genes differentially expressed and associated with PM resistance. An additional objective was to identify SNPs and SSRs for use in future genetic studies. We identified two gerbera genotypes, UFGE 4033 and 06–245-03, that were resistant and susceptible to PM, respectively. De novo assembly of their leaf transcriptomes using four complementary pipelines resulted in 145,348 transcripts with a N50 of 1124 bp, of which 67,312 transcripts contained open reading frames and 48,268 were expressed in both genotypes. A total of 494 transcripts were likely involved in disease resistance, and 17 and 24 transcripts were up- and down-regulated, respectively, in UFGE 4033 compared to 06–245-03. These gerbera disease resistance transcripts were most similar to the NBS-LRR class of plant resistance genes conferring resistance to various pathogens in plants. Four disease susceptibility transcripts (MLO-like) were expressed only or highly expressed in 06–245-03, offering excellent candidate targets for gene editing for PM resistance in gerbera. A total of 449,897 SNPs and 19,393 SSRs were revealed in the gerbera transcriptomes, which can be a valuable resource for developing new molecular markers. Conclusion This study represents the first transcriptomic analysis of gerbera PM resistance, a highly important yet complex trait in a globally important floral crop. The differentially expressed disease resistance and susceptibility transcripts identified provide excellent targets for development of molecular markers and genetic maps, cloning of disease resistance genes, or targeted mutagenesis of disease susceptibility genes for PM resistance in gerbera.

Funder

USDA Hatch project

UF/IFAS Plant Breeding Graduate Initiative (PBGI)

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference82 articles.

1. Lynch RI. Gerbera, with a coloured plate of the new hybrids. Flora Sylva. 1905;3:206–8.

2. FloraHolland. Facts and figures 2014. https://www.royalfloraholland.com/media/3949227/Kengetallen-2014-Engels.pdf. 2014. [Accessed December 12, 2015].

3. United States Department of Agriculture (USDA). Floriculture Crops 2018 Summary. https://www.nass.usda.gov/Publications/Todays_Reports/reports/floran19.pdf. 2019. [Accessed November 6, 2019].

4. GPN Magazine. https://gpnmag.com/article/new-standards-in-gerberas/. 2018. [Accessed May 15, 2020].

5. Teeri TH, Elomaa P, Kotilainen M, Albert VA. Mining plant diversity: Gerbera as a model system for plant developmental and biosynthetic research. BioEssays. 2006;7:756–67.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3