Author:
Badr Abdelfattah,Basuoni Mostafa M.,Ibrahim Mohamed,Salama Yossry E.,Abd-Ellatif Sawsan,Abdel Razek Elsayed S.,Amer Khaled E.,Ibrahim Amira A.,Zayed Ehab M.
Abstract
AbstractPlants spontaneously accumulate γ-aminobutyric acid (GABA), a nonprotein amino acid, in response to various stressors. Nevertheless, there is limited knowledge regarding the precise molecular mechanisms that plants employ to cope with salt stress. The objective of this study was to investigate the impact of GABA on the salt tolerance of eight distinct varieties of bread wheat (Triticum aestivum L.) by examining plant growth rates and physiological and molecular response characteristics. The application of salt stress had a detrimental impact on plant growth markers. Nevertheless, the impact was mitigated by the administration of GABA in comparison to the control treatment. When the cultivars Gemmiza 7, Gemmiza 9, and Gemmiza 12 were exposed to GABA at two distinct salt concentrations, there was a substantial increase in both the leaf chlorophyll content and photosynthetic rate. Both the control wheat cultivars and the plants exposed to salt treatment and GABA treatment showed alterations in stress-related biomarkers and antioxidants. This finding demonstrated that GABA plays a pivotal role in mitigating the impact of salt treatments on wheat cultivars. Among the eight examined kinds of wheat, CV. Gemmiza 7 and CV. Gemmiza 11 exhibited the most significant alterations in the expression of their TaSOS1 genes. CV. Misr 2, CV. Sakha 94, and CV. Sakha 95 exhibited the highest degree of variability in the expression of the NHX1, DHN3, and GR genes, respectively. The application of GABA to wheat plants enhances their ability to cope with salt stress by reducing the presence of reactive oxygen species (ROS) and other stress indicators, regulating stomatal aperture, enhancing photosynthesis, activating antioxidant enzymes, and upregulating genes involved in salt stress tolerance.
Publisher
Springer Science and Business Media LLC