DnaK and DnaJ proteins from Hsp70/40 family are involved in Rubisco biosynthesis in Synechocystis sp. PCC6803 and sustain the enzyme assembly in a heterologous system

Author:

Rydzy Małgorzata,Kolesiński Piotr,Szczepaniak Andrzej,Grzyb Joanna

Abstract

AbstractRibulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the first step of carbon fixation performed by photosynthetic organisms. Form I of this enzyme found in plants and cyanobacteria is composed of eight large (RbcL) and eight small (RbcS) subunits. To form a functional enzyme, Rubisco subunits need to be properly folded, with the assistance of cellular chaperone machinery, and consecutively assembled in a strictly orchestrated manner, with the help of multiple auxiliary factors. In recent years, multiple Rubisco assembly chaperones and their function in enzyme biogenesis have been extensively characterized. Little is known about the potential specialized factors involved in Rubisco subunits folding at the pre-chaperonin stage, yet this knowledge is greatly needed for the fast and efficient testing of new Rubisco variants.Synechococcussp. PCC 6803 Rubisco shows limited solubility and a lack of assembly in theEscherichia coliexpression system. In this study, we aim to identify which additional chaperones are necessary and sufficient in sustaining the heterologous assembly of native Rubisco. Our findings prove that upon the introduction ofSynechocystisDnaK2 to theE. colisystem, RbcL is produced in soluble form. The addition of specific DnaJ (Sll1384) enhances this effect. We explain these combined effects based on binding constancies, measured for particular partners in vitro, as well as our analysis of the putative tertiary structure of the proteins. Our results have potential implications for Rubisco engineering.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3