Green manure increases peanut production by shaping the rhizosphere bacterial community and regulating soil metabolites under continuous peanut production systems

Author:

Xu Yang,Ding Hong,Zhang Guanchu,Li Zelun,Guo Qing,Feng Hao,Qin Feifei,Dai Liangxiang,Zhang Zhimeng

Abstract

Abstract Background Green manure (GM) is a crop commonly grown during fallow periods, which has been applied in agriculture as a strategy to regulate nutrient cycling, improve organic matter, and enhance soil microbial biodiversity, but to date, few studies have examined the effects of GM treatments on rhizosphere soil bacterial community and soil metabolites from continuous cropping peanut field. Results: In this study, we found that the abundances of several functionally significant bacterial groups containing Actinobacteria, Acidobacteria, and genus Sphingomonas, which are associated with nitrogen cycling, were dramatically increased in GM-applied soils. Consistent with the bacterial community results, metabolomics analysis revealed a strong perturbation of nitrogen- or carbon-related metabolisms in GM-applied soils. The substantially up-regulated beneficial metabolites including sucrose, adenine, lysophosphatidylcholine (LPC), malic acid, and betaines in GM-applied soils may contribute to overcome continuous cropping obstacle. In contrast to peanut continuous cropping, planting winter wheat and oilseed rape in winter fallow period under continuous spring peanut production systems evidently improved the soil quality, concomitantly with raised peanut pod yield by 32.93% and 25.20%, in the 2020 season, respectively. Conclusions: GMs application is an effective strategy to overcome continuous cropping obstacle under continuous peanut production systems by improving nutrient cycling, soil metabolites, and rhizobacterial properties.

Funder

National Natural Science Foundation of China

Modern Agricultural Industry Technical System of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3