Author:
Li Chunmei,Liu Xin,Pan Jihong,Guo Jia,Wang Qian,Chen Congping,Li Na,Zhang Kuan,Yang Bin,Sun Changhui,Deng Xiaojian,Wang Pingrong
Abstract
Abstract
Background
Phytyl residues are the common side chains of chlorophyll (Chl) and tocopherols. Geranylgeranyl reductase (GGR), which is encoded by CHLP gene, is responsible for phytyl biosynthesis. The light-harvesting like protein LIL3 was suggested to be required for stability of GGR and protochlorophyllide oxidoreductase in Arabidopsis.
Results
In this study, we isolated a yellow-green leaf mutant, 637ys, in rice (Oryza sativa). The mutant accumulated majority of Chls with unsaturated geranylgeraniol side chains and displayed a yellow-green leaf phenotype through the whole growth period. The development of chloroplasts was suppressed, and the major agronomic traits, especially No. of productive panicles per plant and of spikelets per panicle, dramatically decreased in 637ys. Besides, the mutant exhibited to be sensitive to light intensity and deficiency of tocopherols without obvious alteration in tocotrienols in leaves and grains. Map-based cloning and complementation experiment demonstrated that a point mutation on the OsLIL3 gene accounted for the mutant phenotype of 637ys. OsLIL3 is mainly expressed in green tissues, and its encoded protein is targeted to the chloroplast. Furthermore, the 637ys 502ys (lil3 chlp) double mutant exclusively accumulated geranylgeranyl Chl and exhibited lethality at the three-leaf stage.
Conclusions
We identified the OsLIL3 gene through a map-based cloning approach. Meanwhile, we demonstrated that OsLIL3 is of extreme importance to the function of OsGGR, and that the complete replacement of phytyl side chain of chlorophyll by geranylgeranyl chain could be fatal to plant survival in rice.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献