Author:
Mesmouli Mouataz Billah,Al-Askar Farah M.,Mohammed Wael W.
Abstract
AbstractIn this paper, a $\left ( p,q\right ) $
(
p
,
q
)
-fractional nonlinear difference equation of different orders is considered and discussed. With the help of $\left ( p,q\right ) $
(
p
,
q
)
-calculus for integrals and derivatives properties, we convert the main integral boundary value problem (IBVP) to an equivalent solution in the form of an integral equation, we use the upper–lower solution technique to prove the existence of positive solutions. We present an example of the IBVP to apply and demonstrate the results of our method.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Adjimi, N., Boutiara, A., Samei, M.E., Etemad, S., Rezapour, S., Kaabar, M.K.: On solutions of a hybrid generalized Caputo-type problem via the noncompactness measure in the generalized version of Darbo’s criterion. J. Inequal. Appl. 2023(1), 34 (2023)
2. Aral, A., Gupta, V.: Applications of $(p,q)$-gamma function to Szász Durrmeyer operators. Publ. Inst. Math. 102, 211–220 (2017)
3. Aslam, M., Awan, M.U., Noor, K.I.: Quantum Ostrowski inequalities for q-differentiable convex function. J. Math. Inequal. 10, 1013–1018 (2016)
4. Bangerezaka, G.: Variational q-calculus. J. Math. Anal. Appl. 289, 650–665 (2004)
5. Boutiara, A., Benbachir, M., Alzabut, J., Samei, M.E.: Monotone iterative and upper–lower solution techniques for solving the nonlinear ψ-Caputo fractional boundary value problem. Fractal Fract. 5(4), 194 (2021)