Author:
Li Qin,Xiu Zonghu,Chen Lin
Abstract
AbstractIn this paper, we deal with the following fractional $p\&q$
p
&
q
-Laplacian problem: $$ \left \{ \textstyle\begin{array}{l@{\quad }l} (-\Delta )_{p}^{s}u +(-\Delta )_{q}^{s}u =\lambda a(x)|u|^{\theta -2}u+ \mu b(x)|u|^{r-2}u&\text{in}\;\ \Omega , \\ u(x)=0 &\text{in}\;\ \mathbb{R}^{N}\setminus \Omega , \end{array}\displaystyle \right . $$
{
(
−
Δ
)
p
s
u
+
(
−
Δ
)
q
s
u
=
λ
a
(
x
)
|
u
|
θ
−
2
u
+
μ
b
(
x
)
|
u
|
r
−
2
u
in
Ω
,
u
(
x
)
=
0
in
R
N
∖
Ω
,
where $\Omega \subset \mathbb{R}^{N}$
Ω
⊂
R
N
is a bounded domain with smooth boundary, $s\in (0,1)$
s
∈
(
0
,
1
)
, $(-\Delta )_{m}^{s}$
(
−
Δ
)
m
s
$(m\in \{p,q\})$
(
m
∈
{
p
,
q
}
)
is the fractional m-Laplacian operator, $p,q,r,\theta \in (1,p_{s}^{*}]$
p
,
q
,
r
,
θ
∈
(
1
,
p
s
∗
]
, $p_{s}^{*}=\frac{Np}{N-sp}$
p
s
∗
=
N
p
N
−
s
p
, $\lambda , \mu >0$
λ
,
μ
>
0
, and the weights $a(x)$
a
(
x
)
and $b(x)$
b
(
x
)
are possibly sign changing. Using the concentration compactness principle for fractional Sobolev spaces and the Ekeland variational principle, we prove that the problem admits a nonnegative solution for the critical case $r=p_{s}^{*}$
r
=
p
s
∗
. Moreover, for the subcritical case $r< p_{s}^{*}$
r
<
p
s
∗
, we obtain two existence results by applying the Ekeland variational principle and the mountain pass theorem.
Funder
Anhui Province University Outstanding Young Talents Support Program
the Natural Science Research Project of Anhui Educational Committee
Hainan Provincial Natural Science Foundation of China
the National Natural Science Foundation of China
Shandong Provincial Natural Science Foundation
the Natural Science Foundation of Xinjiang Uygur Autonomous Region
Publisher
Springer Science and Business Media LLC