Abstract
AbstractLet Y be a uniformly convex space with power type p, and let $(G,+)$
(
G
,
+
)
be an abelian group, $\delta ,\varepsilon \geq 0$
δ
,
ε
≥
0
, $0< r<1$
0
<
r
<
1
. We first show a stability result for approximate isometries from an arbitrary Banach space into Y. This is a generalization of Dolinar’ results for $(\delta ,r)$
(
δ
,
r
)
-isometries of Hilbert spaces and $L_{p}$
L
p
($1< p<\infty $
1
<
p
<
∞
) spaces. As a result, we prove that if a standard mapping $F:G\rightarrow Y$
F
:
G
→
Y
satisfies $d(u,F(G))\leq \delta \|u\|^{r}$
d
(
u
,
F
(
G
)
)
≤
δ
∥
u
∥
r
for every $u\in Y$
u
∈
Y
and $$ \bigl\vert \bigl\Vert F(x)-F(y) \bigr\Vert - \bigl\Vert F(x-y) \bigr\Vert \bigr\vert \leq \varepsilon , \quad x,y \in G, $$
|
∥
F
(
x
)
−
F
(
y
)
∥
−
∥
F
(
x
−
y
)
∥
|
≤
ε
,
x
,
y
∈
G
,
then there is an additive operator $A:G\rightarrow Y$
A
:
G
→
Y
such that $$ \bigl\Vert F(x)-Ax \bigr\Vert =o\bigl( \bigl\Vert F(x) \bigr\Vert \bigr) \quad \text{as } \bigl\Vert F(x) \bigr\Vert \rightarrow \infty . $$
∥
F
(
x
)
−
A
x
∥
=
o
(
∥
F
(
x
)
∥
)
as
∥
F
(
x
)
∥
→
∞
.
Funder
Research Program of Science at Universities of Inner Mongolia Autonomous Region
Fund Project for Central Leading Local Science and Technology Development
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis