New inertial self-adaptive algorithms for the split common null-point problem: application to data classifications

Author:

Promkam Ratthaprom,Sunthrayuth Pongsakorn,Kesornprom Suparat,Tanprayoon Ekapak

Abstract

AbstractIn this paper, we propose two inertial algorithms with a new self-adaptive step size for approximating a solution of the split common null-point problem in the framework of Banach spaces. The step sizes are adaptively updated over each iteration by a simple process without the prior knowledge of the operator norm of the bounded linear operator. Under suitable conditions, we prove the weak-convergence results for the proposed algorithms in p-uniformly convex and uniformly smooth Banach spaces. Finally, we give several numerical results in both finite- and infinite-dimensional spaces to illustrate the efficiency and advantage of the proposed methods over some existing methods. Also, data classifications of heart diseases and diabetes mellitus are presented as the applications of our methods.

Funder

The Science, Research and Innovation Promotion Funding

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference51 articles.

1. https://www.kaggle.com/datasets/whenamancodes/predict-diabities

2. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, Berlin (2009)

3. Alber, Y., Ryazantseva, I.: Nonlinear Ill-Posed Problems of Monotone Type. Springer, Dordrecht (2006)

4. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, pp. 15–50. Dekker, New York (1996)

5. Alofi, A.S., Alsulami, S.M., Takahashi, W.: Strongly convergent iterative method for the split common null point problem in Banach spaces. J. Nonlinear Convex Anal. 17, 311–324 (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3