Myocardial protection against global ischemia with Krebs-Henseleit buffer-based cardioplegic solution

Author:

Minasian Sarkis M,Galagudza Michael M,Dmitriev Yuri V,Kurapeev Dmitry I,Vlasov Timur D

Abstract

Abstract Background The Krebs-Henseleit buffer is the best perfusion solution for isolated mammalian hearts. We hypothesized that a Krebs-Henseleit buffer-based cardioplegic solution might provide better myocardial protection than well-known crystalloid cardioplegic solutions because of its optimal electrolyte and glucose levels, presence of buffer systems, and mild hyperosmolarity. Methods Isolated Langendorff-perfused rat hearts were subjected to either global ischemia without cardioplegia (controls) or cardioplegic arrest for either 60 or 180 min, followed by 120 min of reperfusion. The modified Krebs-Henseleit buffer-based cardioplegic solution (mKHB) and St. Thomas’ Hospital solution No. 2 (STH2) were studied. During global ischemia, the temperatures of the heart and the cardioplegic solutions were maintained at either 37°C (60 min of ischemia) or 22°C (moderate hypothermia, 180 min of ischemia). Hemodynamic parameters were registered throughout the experiments. The infarct size was determined through histochemical examination. Results Cardioplegia with the mKHB solution at moderate hypothermia resulted in a minimal infarct size (5 ± 3%) compared to that in the controls and STH2 solution (35 ± 7% and 19 ± 9%, respectively; P < 0.001, for both groups vs. the mKHB group). In contrast to the control and STH2-treated hearts, no ischemic contracture was registered in the mKHB group during the 180-min global ischemia. At normothermia, the infarct sizes were 4 ± 3%, 72 ± 6%, and 70 ± 12% in the mKHB, controls, and STH2 groups, respectively (P < 0.0001). In addition, cardioplegia with mKHB at normothermia prevented ischemic contracture and improved the postischemic functional recovery of the left ventricle (P < 0.001, vs. STH2). Conclusions The data suggest that the Krebs-Henseleit buffer-based cardioplegic might be superior to the standard crystalloid solution (STH2).

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Surgery,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3