Biological modification of pentosans in wheat B starch wastewater and preparation of a composite film

Author:

Li Piwu,Zhao Fei,Wei Xiaofeng,Tao Xiangling,Ding Feng

Abstract

Abstract Background Petrochemical resources are becoming increasingly scarce, and petroleum-based plastic materials adversely impact the environment. Thus, replacement of petroleum-based materials with new and effective renewable materials is urgently required. Results In this study, a wheat pentosan-degrading bacterium (MXT-1) was isolated from wheat-processing plant wastewater. The MXT-1 strain was identified using molecular biology techniques. The degradation characteristics of the bacteria in wheat pentosan were analyzed. The results show that wheat pentosan was effectively degraded by bacteria. The molecular weight of fermented wheat pentosan decreased from 1730 to 257 kDa. The pentosan before and after the biological modification was mixed with chitosan to prepare a composite film. After fermentation, the water-vapor permeability of the wheat pentosan film decreased from 0.2769 to 0.1286 g mm (m2 h KPa)−1. Results obtained from the Fourier-transformed infrared experiments demonstrate that the wave number of the hydroxyl-stretching vibration peak of the membrane material decreased, and the width of the peak widened. The diffraction peak of the film shifted to the higher 2θ, as seen using X-ray diffraction. The cross-section of the modified composite membrane was observed via scanning electron microscopy, which revealed that the structure was denser; however, no detectable phase separation was observed. These results may indicate improved molecular compatibility between wheat pentosan and chitosan and stronger hydrogen bonding between the molecules. Given the increased number of short-chain wheat pentosan molecules, although the tensile strength of the film decreased, its flexibility increased after fermentation modification. Conclusion The findings of this study established that the physical properties of polysaccharide films can be improved using strain MXT-1 to ferment and modify wheat pentosan. The compatibility and synergy between pentosan and chitosan molecules was substantially enhanced, and hydrogen bonding was strengthened after biological modification. Therefore, modified pentosan film could be a potential candidate material for edible packaging films.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3