Performance analysis of remote photoplethysmography deep filtering using long short-term memory neural network

Author:

Botina-Monsalve DeividORCID,Benezeth Yannick,Miteran Johel

Abstract

Abstract Background Remote photoplethysmography (rPPG) is a technique developed to estimate heart rate using standard video cameras and ambient light. Due to the multiple sources of noise that deteriorate the quality of the signal, conventional filters such as the bandpass and wavelet-based filters are commonly used. However, after using conventional filters, some alterations remain, but interestingly an experienced eye can easily identify them. Results We studied a long short-term memory (LSTM) network in the rPPG filtering task to identify these alterations using many-to-one and many-to-many approaches. We used three public databases in intra-dataset and cross-dataset scenarios, along with different protocols to analyze the performance of the method. We demonstrate how the network can be easily trained with a set of 90 signals totaling around 45 min. On the other hand, we show the stability of the LSTM performance with six state-of-the-art rPPG methods. Conclusions This study demonstrates the superiority of the LSTM-based filter experimentally compared with conventional filters in an intra-dataset scenario. For example, we obtain on the VIPL database an MAE of 3.9 bpm, whereas conventional filtering improves performance on the same dataset from 10.3 bpm to 7.7 bpm. The cross-dataset approach presents a dependence in the network related to the average signal-to-noise ratio on the rPPG signals, where the closest signal-to-noise ratio values in the training and testing set the better. Moreover, it was demonstrated that a relatively small amount of data are sufficient to successfully train the network and outperform the results obtained by classical filters. More precisely, we have shown that about 45 min of rPPG signal could be sufficient to train an effective LSTM deep-filter.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3