Multimodal diagnosis model of Alzheimer’s disease based on improved Transformer

Author:

Tang Yan,Xiong Xing,Tong Gan,Yang Yuan,Zhang Hao

Abstract

Abstract Purpose Recent technological advancements in data acquisition tools allowed neuroscientists to acquire different modality data to diagnosis Alzheimer’s disease (AD). However, how to fuse these enormous amount different modality data to improve recognizing rate and find significance brain regions is still challenging. Methods The algorithm used multimodal medical images [structural magnetic resonance imaging (sMRI) and positron emission tomography (PET)] as experimental data. Deep feature representations of sMRI and PET images are extracted by 3D convolution neural network (3DCNN). An improved Transformer is then used to progressively learn global correlation information among features. Finally, the information from different modalities is fused for identification. A model-based visualization method is used to explain the decisions of the model and identify brain regions related to AD. Results The model attained a noteworthy classification accuracy of 98.1% for Alzheimer’s disease (AD) using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Upon examining the visualization results, distinct brain regions associated with AD diagnosis were observed across different image modalities. Notably, the left parahippocampal region emerged consistently as a prominent and significant brain area. Conclusions A large number of comparative experiments have been carried out for the model, and the experimental results verify the reliability of the model. In addition, the model adopts a visualization analysis method based on the characteristics of the model, which improves the interpretability of the model. Some disease-related brain regions were found in the visualization results, which provides reliable information for AD clinical research.

Funder

Central South University

Guangxi Key Lab of Multi-source Information Mining and Security

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the Interpretability of Machine Learning Models in Early Detection of Alzheimer's Disease;2024 16th International Conference on Human System Interaction (HSI);2024-07-08

2. Transformer’s Role in Brain MRI: A Scoping Review;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3