Author:
Chen Ying,Xu Zaipin,Deng Xiaoyan,Yang Shibo,Tan Wenchang,Fan Yubo,Han Yong,Xing Yubin
Abstract
Abstract
Background
Cone-shaped vena cava filters (VCFs) are widely used to treat venous thromboembolism. However, in the long term, the problem of occlusion persists even after the filter is deployed. A previous study hypothesized that the reverse deployment of a cone-shaped VCFs may prevent filter blockage.
Methods
To explore this hypothesis, a comparative study of the traditional and reverse deployments of VCFs was conducted using a computational fluid dynamics approach. The distribution of wall shear stress (WSS) and shear stress-related parameters were calculated to evaluate the differences in hemodynamic effects between both conditions. In the animal experiment, we reversely deployed a filter in the vena cava of a goat and analyzed the blood clot distribution in the filter.
Results
The numerical simulation showed that the reverse deployment of a VCF resulted in a slightly higher shear rate on the thrombus, and no reductions in the oscillating shear index (OSI) and relative residence time (RRT) on the vessel wall. Comparing the traditional method with the reversely deployed cases, the shear rate values is 16.49 and 16.48 1/s, respectively; the minimal OSI values are 0.01 and 0.04, respectively; in the vicinity of the VCF, the RRT values are both approximately 5 1/Pa; and the WSS is approximately 0.3 Pa for both cases. Therefore, the reverse deployment of cone-shaped filters is not advantageous when compared with the traditional method in terms of local hemodynamics. However, it is effective in capturing thrombi in the short term, as demonstrated via animal experiments. The reversely deployed cone-shaped filter captured the thrombi at its center in the experiments.
Conclusions
Thus, the reverse deployment of cone-shaped filters is not advantageous when compared with the traditional method in terms of local hemodynamics. Therefore, we would not suggest the reverse deployment of the cone-shaped filter in the vena cava to prevent a potentially fatal pulmonary embolism.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献