Radiotherapy dose distribution prediction for breast cancer using deformable image registration

Author:

Bai XueORCID,Wang Binbing,Wang Shengye,Wu Zhangwen,Gou Chengjun,Hou Qing

Abstract

Abstract Background Radiotherapy treatment planning dose prediction can be used to ensure plan quality and guide automatic plan. One of the dose prediction methods is incorporating historical treatment planning data into algorithms to estimate the dose–volume histogram (DVH) of organ for new patients. Although DVH is used extensively in treatment plan quality and radiotherapy prognosis evaluation, three-dimensional dose distribution can describe the radiation effects more explicitly. The purpose of this retrospective study was to predict the dose distribution of breast cancer radiotherapy by means of deformable registration into atlas images with historical treatment planning data that were considered to achieve expert level. The atlas cohort comprised 20 patients with left-sided breast cancer, previously treated by volumetric-modulated arc radiotherapy. The registration-based prediction technique was applied to 20 patients outside the atlas cohort. This study evaluated and compared three different approaches: registration to the most similar image from a dataset of individual atlas images (SIM), registration to all images from a database of individual atlas images with the average method (WEI_A), and the weighted method (WEI_F). The dose prediction performance of each strategy was quantified using nine metrics, including the region of interest dose error, 80% and 100% prescription area dice similarity coefficients (DSCs), and γ metrics. A Friedman test and a nonparametric exact Wilcoxon signed rank test were performed to compare the differences among groups. The clinical doses of all cases served as the gold standard. Results The WEI_F method could achieve superior dose prediction results to those of WEI_A. WEI_F outperformed SIM in the organ-at-risk mean absolute difference (MAD). When using the WEI_F method, the MAD values for the ipsilateral lung, heart, and whole lung were 197.9 ± 42.9, 166 ± 55.1, 122.3 ± 25.5, and 55.3 ± 42.2 cGy, respectively. Moreover, SIM exhibited superior prediction in the DSC and γ metrics. When using the SIM method, the means of the 80% and 100% prescription area DSCs, 33γ metric, and 55γ metric were 0.85 ± 0.05, 0.84 ± 0.05, 0.64 ± 0.13, and 0.84 ± 0.10, respectively. The plan target volume and spinal cord MAD when using SIM and WEI were 235.6 ± 158.4 cGy versus 227.4 ± 144.0 cGy ($$p > 0.05$$p>0.05) and 61.4 ± 44.9 cGy versus 55.3 ± 42.2 cGy ($$p > 0.05$$p>0.05), respectively. Conclusions A predicted dose distribution that approximated the clinical plan could be generated using the methods presented in this study.

Funder

Key Technologies Research and Development Program

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3