Author:
Ham Youngjib,Golparvar-Fard Mani
Abstract
Abstract
Background
Building deteriorations instigated by material degradations or moisture intrusions are the primary causes for energy inefficiency in many existing buildings. For choosing appropriate retrofits, it is important to carefully diagnose and analyze building areas in need of improvements. In addition to reliable sensing and analysis of as-is energy performance, an intuitive recording and visualization of energy diagnostic outcomes are also critical to effectively illustrate the as-is building conditions to homeowners during retrofit decision-making processes.
Method
Toward this goal, this paper presents a thermography-based method to visualize the actual thermal resistance and condensation problems in 3D while taking static occlusions into account. First, several overlapping digital and thermal images are collected from the building areas under inspection. Using a computer vision method– consisting of image-based 3D point cloud and mesh modeling algorithmsactual 3D spatio-thermal actual 3D spatio-thermal models are generated where surface temperature can be queried at the level of 3D points. Based on the resulting 3D spatio-thermal models and by measuring the reflected and dew point temperatures, the actual R-values of building assemblies are calculated, and the condensation issues are analyzed. Taking static occlusions into account, (1) the distribution of the actual thermal resistance over each building assembly, (2) the detected building areas with condensation problems, and (3) the corresponding geometrical and thermal characteristics are jointly visualized within a 3D environment.
Results
To validate the method and investigate the perceived benefits, four experiments have been conducted in existing buildings. Surveys are also conducted by professional energy auditors. The proposed method provides 3D visual representation of the actual thermal resistance distributions and building areas associated with condensation issues at the level of 3D points across geometrical forms while taking static occlusions into account.
Conclusions
The experimental results and the feedback received from the professionals show the promise of the proposed method in facilitating systematic post-examination of building deteriorations and support retrofit decision-makings. Ultimately, converting surface temperature data obtained from an IR camera into 3D visualization of energy performance metrics and possible condensation problems enables practitioners to better understand the as-is building conditions.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Engineering (miscellaneous),Modelling and Simulation
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献