Author:
Szczesny Kamil,König Markus
Abstract
Abstract
Background
A reasonable management and monitoring of construction projects requires accurate construction schedules. Accuracy depends highly on availability of reliable actual logistics data. Such data contain information about available material, equipment, personnel, updated delivery dates, and other data on site conditions. However, such data is often associated with different types of uncertainties due to infrequent collections, varying transport times, or manual assessments. Nonetheless, consideration of these uncertainties is important for evaluating actual data regarding their impact on the overall construction progress. Currently, the integration of such data into construction schedules is a time-consuming, manual and, thus, error-prone process. Therefore, in practice schedules are not updated as often as they should be.
Methods
To ease the handling of actual data and their integration into construction schedules, a reactive construction scheduling approach is presented. The approach is structured into four successive steps. To evaluate and systematically analyze uncertain actual data, fuzzy set theory and α-cut method are incorporated. Thus, actual data can be integrated into discrete-event simulation models. These models are used to perform simulation-based sensitivity analyzes, which evaluate impacts on construction schedules. As a result, an actual schedule is generated, such that a target-actual schedule comparison can be performed. If significant deviations or problems are identified, adaption is necessary and a new schedule needs to be generated. Thereby, different restrictions on the target schedule, such as contracted delivery dates, milestones or resource allocation must be considered. To perform this required adaption simulation-based optimization is utilized.
Results
To validate the method and show its advantages, an initial construction schedule example is created. The example is extended to incorporate uncertain actual logistics data. The proposed method shows how efficient actual data can be analyzed to update construction schedules. Further, the results show a competitive adaption of invalid construction schedules, such that contracted milestones, or other project objectives can be achieved.
Conclusion
The presented reactive construction scheduling method has the ability to improve current treatment of uncertain actual logistics data. This helps construction project managers to improve the management and monitoring of construction projects by reducing the time-consuming, error-prone process of updating inconsistent schedules.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Engineering (miscellaneous),Modelling and Simulation
Reference38 articles.
1. Abebe, A, Guinot, V, & Solomatine, D. (2000). Fuzzy alpha-cut vs. Monte Carlo techniques in assessing uncertainty in model parameters. Proc. 4th International Conference on Hydroinformatics, 23–27 July 2000. Iowa City, USA: University of Iowa College of Engineering.
2. AbouRizk, S. (2010). Role of simulation in construction engineering and management. Journal of Construction Engineering and Management, 136(10), 1140–1153. doi:10.1061/(ASCE)CO.1943-7862.000022.
3. Beißert, U, König, M, Bargstädt, H-J. (2007). Constraint-based simulation of outfitting processes in building engineering. Proc. 24th Int. Conf. Manag. IT Constr. CIB W078, 26–29 June 2007. Maribor, Slovenia. http://itc.scix.net/cgi-bin/works/Show?w78_2007_95.
4. Buckley, J, & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. Heidelberg: Physika-Verlag.
5. Cai, H, Andoh, AR, Su, X, & Li, S. (2014). A boundary condition based algorithm for locating construction site objects using RFID and GPS. Advanced Engineering Informatics, 28(4), 455–468. doi:10.1016/j.aei.2014.07.002.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献