Author:
Herrler Tanja,Wang Hao,Tischer Anne,Bartenstein Peter,Jauch Karl-Walter,Guba Markus,Diemling Markus,Nimmon Cyril,Hacker Marcus
Abstract
Abstract
Background
Experimental models are essential tools in the development and evaluation of novel treatment options, but the preclinical model of renal ischemia-reperfusion injury is limited to the retrieval of (very) early functional data, leaving the pivotal long-term outcome unknown. The present study applies technetium-99m-mercapto-acetyl-tri-glycine [99mTc-MAG3] scintigraphy for the longitudinal follow-up examination of long-term kidney function after renal ischemia-reperfusion injury.
Methods
Unilateral warm ischemia was induced in scid beige mice by vascular clamping of the kidney hilum for 40 min. 99mTc-MAG3 scintigraphy was performed prior to injury, 8 and 14 days post ischemia. The fractional uptake rate [FUR] was calculated from scintigraphy data as a measure of renal clearance.
Results
FUR demonstrated a significant functional impairment of the ischemic kidney 8 and 14 days after injury (P < 0.05 vs. baseline), while contralateral non-ischemic kidneys showed no significant changes. In histological analysis, ischemic kidneys exhibited tubular dilatation and cytoplasmic degeneration as signs of hypoxia without any evidence for necrosis.
Conclusions
FUR enables the detection of renal dysfunction and longitudinal long-term follow-up examination in the same individual. Our model may facilitate preclinical therapy evaluation for the identification of effective renoprotective therapies.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献