Abstract
Abstract
Background
Taurochenodeoxycholic acid (TCDCA) is one of the major active components in bile acid. It was proven to have inhibitory activities on inflammation and also participate in host immuno-regulation. TCDCA exerts anti-inflammatory and immuno-regulatory effects through the glucocorticoid receptor (GR) mediated genomic signaling pathway and the G protein-coupled bile acid receptor 5 (TGR5) mediated AC-cAMP-PKA signaling pathway. However, it is unclear whether GR or TGR5 plays an important role in the regulatory effects of TCDCA. In order to further investigate this effects mechanism of TCDCA, the research use the transcriptome to identify the major genes and pathway in the anti-inflammatory and immuno-regulatory effects.
Methods
After the Fibroblast-like synoviocytes (FLS) being treated by different concentrations (10− 5, 10− 6 and 10− 7 M) of TCDCA for 12 h, the resulting mRNA was analyzed by RNA-seq. The differentially expressed genes were screened from sequencing results using bioinformatics techniques. In the next step, other published literature were referred in order to find out whether those genes mentioned above are related to inflammation. The final selected differentially expressed genes associated with inflammation were then validated by q-PCR and western blot assays.
Results
Five genes associated with anti-inflammatory and immuno-regulatory effects, include Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Glutathione peroxidase 3 (GPX3), Serine/arginine-rich splicing factor-9 (SRSF9), Connective tissue growth factor (CTGF) and Cystatin B (CSTB) were identified. TCDCA at the concentrations of 10− 5, 10− 6 and 10− 7 M significantly (p < 0.05) up-regulate the mRNA and protein expression of SRSF9 and GPX3 and also up-regulate the mRNA expression of CSTB, CTGF and GAPDH. RNA-seq results of GPX3 and SRSF9 expression were consistent with q-PCR results, while q-PCR results of CTGF, GAPDH showed inconsistent with their RNA-seq results. Q-PCR result of CSTB expression also showed inconsistent with the RNA-seq result.
Conclusions
The anti-inflammatory and immuno-regulatory activities of TCDCA are proven to be related to the up-regulation expression of GPX3, SRSF9 and CSTB.
Funder
National Natural Science Foundation of China
Young Scientists Fund
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Pharmacology
Reference29 articles.
1. He X, Guan H, Li P. Taurochenodeoxycholic acid research progress. Anim Husbandry Feed Sci. 2008;3:57–60.
2. Nguyen A, Bouscarel B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal. 2008;20(12):2180–97.
3. Li P, Guan H, Hasi S, Cao J. Anti-inflammatory effect study of chicken bile’s effective components CDCA and the TCDCA. J Tradit Chin Vet Med. 2002;1:7–10.
4. Hu X, Shi C. Compare of tauro-conjugated bile acids with the corresponding free bile acids in antiussive, expectorant and anti-inflammatory effects. Chin J Clin Pharm. 2001;2:85–8.
5. Liu M, Mao W, Guan H, Li L, Wei B, Li P. Effects of taurochenodeoxycholic acid on adjuvant arthritis in rats. Int Immunopharmacol. 2011;11(12):2150–8.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献