Disentangling land model uncertainty via Matrix-based Ensemble Model Inter-comparison Platform (MEMIP)

Author:

Liao Cuijuan,Chen Yizhao,Wang Jingmeng,Liang Yishuang,Huang Yansong,Lin Zhongyi,Lu Xingjie,Huang Yuanyuan,Tao Feng,Lombardozzi Danica,Arneth Almut,Goll Daniel S.,Jain Atul,Sitch Stephen,Lin Yanluan,Xue Wei,Huang Xiaomeng,Luo Yiqi

Abstract

Abstract Background Large uncertainty in modeling land carbon (C) uptake heavily impedes the accurate prediction of the global C budget. Identifying the uncertainty sources among models is crucial for model improvement yet has been difficult due to multiple feedbacks within Earth System Models (ESMs). Here we present a Matrix-based Ensemble Model Inter-comparison Platform (MEMIP) under a unified model traceability framework to evaluate multiple soil organic carbon (SOC) models. Using the MEMIP, we analyzed how the vertically resolved soil biogeochemistry structure influences SOC prediction in two soil organic matter (SOM) models. By comparing the model outputs from the C-only and CN modes, the SOC differences contributed by individual processes and N feedback between vegetation and soil were explicitly disentangled. Results Results showed that the multi-layer models with a vertically resolved structure predicted significantly higher SOC than the single layer models over the historical simulation (1900–2000). The SOC difference between the multi-layer models was remarkably higher than between the single-layer models. Traceability analysis indicated that over 80% of the SOC increase in the multi-layer models was contributed by the incorporation of depth-related processes, while SOC differences were similarly contributed by the processes and N feedback between models with the same soil depth representation. Conclusions The output suggested that feedback is a non-negligible contributor to the inter-model difference of SOC prediction, especially between models with similar process representation. Further analysis with TRENDY v7 and more extensive MEMIP outputs illustrated the potential important role of multi-layer structure to enlarge the current ensemble spread and the necessity of more detail model decomposition to fully disentangle inter-model differences. We stressed the importance of analyzing ensemble outputs from the fundamental model structures, and holding a holistic view in understanding the ensemble uncertainty.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Matrix Approach to Accelerate Spin‐Up of CLM5;Journal of Advances in Modeling Earth Systems;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3