Neocosmopolitan distributions of invertebrate aquatic invasive species due to euryhaline geographic history and human-mediated dispersal: Ponto-Caspian versus other geographic origins

Author:

Dobrzycka-Krahel Aldona,Stepien Carol A.ORCID,Nuc Zofia

Abstract

Abstract Background Aquatic invertebrate species that have broad salinity tolerances may be pre-adapted for invasion success and biogeographic distributional range expansions, facilitated by human-mediated dispersal (HMD), leading to a trend to become neocosmopolitan across many regions of the world. This pattern appears to characterize many Ponto-Caspian (P-C) aquatic invertebrates, which have a > 100-year history as aquatic invasive species (AIS), spreading throughout much of Eurasia and for some, in North America and beyond. Our study compiles comparative salinity conditions and distributional data for AIS invertebrate species globally versus those originating from the P-C region, to test whether they statistically differ. Results Our investigation discerns that a total of 1861 invertebrate AIS taxa have been recorded worldwide, with (A) 70.5% exclusively living in the saline adaptive zone of brackish (0.5–30 ppt; A1) and/or marine waters (> 30 ppt; A2), (B) 20% in the freshwater adaptive zone alone (0–0.5 ppt), (C) 7.5% being euryhaline (across both A and B), and (D) 2% being semi-aquatic in either (D1) freshwater/terrestrial or (D2) saline/terrestrial environments. In contrast, our results indicate the following proportions for AIS invertebrates of P-C origins: (A) 27% exclusively inhabit the saline adaptive zone, (B) 25% are entirely freshwater, (C) 45% are euryhaline, and (D) 3% are semi-aquatic, significantly differing from the global pattern. Euryhaline AIS native to the P-C region thus markedly outnumber (45%) those originating from other regions (7.5%), likely pre-adapting them for widespread establishment in harbors, estuaries, and coastal areas. Moreover, most P-C invertebrate AIS (70%) contain freshwater-tolerant populations (B + C), rendering them very successful invaders of inland water bodies. These broad salinity tolerances of P-C AIS underlie their tremendous invasion successes and growing neocosmopolitan distributions with HMD. Conclusions An evolutionary and recent history of broad salinity tolerances of a large proportion of P-C invertebrates appears to enhance their ability to invade, establish, and spread in new regions, especially harbors, estuaries, and freshwaters, leading to their increasing neocosmopolitan distributions. This trend likely will continue—accelerating with climate change and increased global transportation—meriting worldwide conservation agency focus and cooperation, along with public education programs aimed to rapidly identify and circumvent new introductions and spread.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3