Passivation remediation of weakly alkaline Cd-contaminated soils using combined treatments of biochar and sepiolite

Author:

Zhang YuxinORCID,Gao Shan,Jia Hongtao,Sun Tao,Zheng Shunan,Wu Shihang,Sun Yuebing

Abstract

Abstract Background Cadmium (Cd) pollution in agricultural soils has become a priority environmental concern globally. A reasonable application of passivators is critical to address the problem. In this study, we examined the remediation effects of rice husk biochar (rBC) and sepiolite (Sep) as single and combined (rBC + Sep) treatments on Cd pollution in a weakly alkaline soil using three maize cultivars (Liyu 16, Zhengdan 958, and Sanbei 218) as test crops. We also explained the mechanisms involved in the remediation effects. Results The pseudo-second-order kinetic equation and Langmuir model could well describe the adsorption process of rBC + Sep for Cd2+. Compared with the control treatment (CK), soil available Cd concentration decreased by 29.51–36.34% under rBC + Sep treatment (p< 0.05) and the Cd concentrations in maize grains of Liyu 16, Zhengdan 958, and Sanbei 218 decreased by 38.08–47.85%, 37.25–45.61%, and 33.96–46.15%, respectively (p< 0.05). Following passivation treatment, soil available Cd concentration decreased and gradually changed from the exchangeable and carbonate binding forms to the Fe/Mn oxide and residual forms. The bioconcentration factors of Liyu 16 (0.05–0.09) and Sanbei 218 (0.05–0.09) were lower than those of Zhengdan 958 (0.07–0.13). In addition, rBC +Sep treatment increased soil pH and soil electrical conductivity, but the differences were not significant (p> 0.05). Conclusions The application of 0.2% rBC + 0.5% Sep composite passivation material to weakly alkaline Cd-contaminated soil can effectively reduce the Cd concentration of soil and maize.

Funder

Chinese Academy of Agricultural Sciences-Science Center Agricultural Green Low Carbon

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3