Comparative proteomic analysis of children FSGS FFPE tissues

Author:

Ni Jiajia,Tian Sha,Bai Lin,Lv Qianying,Liu Jialu,Liu Jiaojiao,Fang Ye,Zhai Yihui,Shen Qian,Rao Jia,Ding Chen,Xu Hong

Abstract

Abstract Background In children, focal segmental glomerulosclerosis (FSGS) is the main cause of steroid resistant nephrotic syndrome (SRNS). To identify specific candidates and the mechanism of steroid resistance, we examined the formalin-fixed paraffin embedded (FFPE) renal tissue protein profiles via liquid chromatography tandem mass spectrometry (LC-MS/MS). Methods Renal biopsies from seven steroid-sensitive (SS) and eleven steroid-resistant (SR) children FSGS patients were obtained. We examined the formalin-fixed paraffin embedded (FFPE) renal tissue protein profiles via liquid chromatography tandem mass spectrometry (LC-MS/MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) analysis, as well as the construction of protein-protein interaction (PPI) network were performed. Two proteins were further valiadated by immunohistochemistry staining in FSGS patients and mice models. Results In total, we quantified more than 4000 proteins, of which 325 were found to be differentially expressed proteins (DEPs) between the SS and SR group (foldchange ≥2, P<0.05). The results of GO revealed that the most significant up-regulated proteins were primarily related to protein transportation, regulation of the complement activation process and cytolysis. Moreover, clustering analysis showed differences in the pathways (lysosome, terminal pathway of complement) between the two groups. Among these potential candidates, validation analyses for LAMP1 and ACSL4 were conducted. LAMP1 was observed to have a higher expression in glomerulus, while ACSL4 was expressed more in tubular epithelial cells. Conclusions In this study, the potential mechanism and candidates related to steroid resistance in children FSGS patients were identified. It could be helpful in identifying potential therapeutic targets and predicting outcomes with these proteomic changes for children FSGS patients.

Funder

Natural Science Foundation of China

Program of Greater Bay Area Institute of Precision Medicine

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3